This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for asinsin . (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | asinsinlem | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( Re ` ( exp ` ( _i x. A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | |- _i e. CC |
|
| 2 | simpl | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> A e. CC ) |
|
| 3 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 4 | 1 2 3 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. A ) e. CC ) |
| 5 | 4 | recld | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( _i x. A ) ) e. RR ) |
| 6 | 5 | reefcld | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( Re ` ( _i x. A ) ) ) e. RR ) |
| 7 | simpr | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
|
| 8 | neghalfpirx | |- -u ( _pi / 2 ) e. RR* |
|
| 9 | halfpire | |- ( _pi / 2 ) e. RR |
|
| 10 | 9 | rexri | |- ( _pi / 2 ) e. RR* |
| 11 | elioo2 | |- ( ( -u ( _pi / 2 ) e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> ( ( Re ` A ) e. RR /\ -u ( _pi / 2 ) < ( Re ` A ) /\ ( Re ` A ) < ( _pi / 2 ) ) ) ) |
|
| 12 | 8 10 11 | mp2an | |- ( ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> ( ( Re ` A ) e. RR /\ -u ( _pi / 2 ) < ( Re ` A ) /\ ( Re ` A ) < ( _pi / 2 ) ) ) |
| 13 | 7 12 | sylib | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( Re ` A ) e. RR /\ -u ( _pi / 2 ) < ( Re ` A ) /\ ( Re ` A ) < ( _pi / 2 ) ) ) |
| 14 | 13 | simp1d | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` A ) e. RR ) |
| 15 | 14 | recoscld | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` ( Re ` A ) ) e. RR ) |
| 16 | efgt0 | |- ( ( Re ` ( _i x. A ) ) e. RR -> 0 < ( exp ` ( Re ` ( _i x. A ) ) ) ) |
|
| 17 | 5 16 | syl | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( exp ` ( Re ` ( _i x. A ) ) ) ) |
| 18 | cosq14gt0 | |- ( ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 0 < ( cos ` ( Re ` A ) ) ) |
|
| 19 | 18 | adantl | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( cos ` ( Re ` A ) ) ) |
| 20 | 6 15 17 19 | mulgt0d | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( ( exp ` ( Re ` ( _i x. A ) ) ) x. ( cos ` ( Re ` A ) ) ) ) |
| 21 | efeul | |- ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) = ( ( exp ` ( Re ` ( _i x. A ) ) ) x. ( ( cos ` ( Im ` ( _i x. A ) ) ) + ( _i x. ( sin ` ( Im ` ( _i x. A ) ) ) ) ) ) ) |
|
| 22 | 4 21 | syl | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( _i x. A ) ) = ( ( exp ` ( Re ` ( _i x. A ) ) ) x. ( ( cos ` ( Im ` ( _i x. A ) ) ) + ( _i x. ( sin ` ( Im ` ( _i x. A ) ) ) ) ) ) ) |
| 23 | 22 | fveq2d | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( exp ` ( _i x. A ) ) ) = ( Re ` ( ( exp ` ( Re ` ( _i x. A ) ) ) x. ( ( cos ` ( Im ` ( _i x. A ) ) ) + ( _i x. ( sin ` ( Im ` ( _i x. A ) ) ) ) ) ) ) ) |
| 24 | 4 | imcld | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Im ` ( _i x. A ) ) e. RR ) |
| 25 | 24 | recoscld | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` ( Im ` ( _i x. A ) ) ) e. RR ) |
| 26 | 25 | recnd | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` ( Im ` ( _i x. A ) ) ) e. CC ) |
| 27 | 24 | resincld | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( sin ` ( Im ` ( _i x. A ) ) ) e. RR ) |
| 28 | 27 | recnd | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( sin ` ( Im ` ( _i x. A ) ) ) e. CC ) |
| 29 | mulcl | |- ( ( _i e. CC /\ ( sin ` ( Im ` ( _i x. A ) ) ) e. CC ) -> ( _i x. ( sin ` ( Im ` ( _i x. A ) ) ) ) e. CC ) |
|
| 30 | 1 28 29 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. ( sin ` ( Im ` ( _i x. A ) ) ) ) e. CC ) |
| 31 | 26 30 | addcld | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( cos ` ( Im ` ( _i x. A ) ) ) + ( _i x. ( sin ` ( Im ` ( _i x. A ) ) ) ) ) e. CC ) |
| 32 | 6 31 | remul2d | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( ( exp ` ( Re ` ( _i x. A ) ) ) x. ( ( cos ` ( Im ` ( _i x. A ) ) ) + ( _i x. ( sin ` ( Im ` ( _i x. A ) ) ) ) ) ) ) = ( ( exp ` ( Re ` ( _i x. A ) ) ) x. ( Re ` ( ( cos ` ( Im ` ( _i x. A ) ) ) + ( _i x. ( sin ` ( Im ` ( _i x. A ) ) ) ) ) ) ) ) |
| 33 | 25 27 | crred | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( ( cos ` ( Im ` ( _i x. A ) ) ) + ( _i x. ( sin ` ( Im ` ( _i x. A ) ) ) ) ) ) = ( cos ` ( Im ` ( _i x. A ) ) ) ) |
| 34 | imre | |- ( ( _i x. A ) e. CC -> ( Im ` ( _i x. A ) ) = ( Re ` ( -u _i x. ( _i x. A ) ) ) ) |
|
| 35 | 4 34 | syl | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Im ` ( _i x. A ) ) = ( Re ` ( -u _i x. ( _i x. A ) ) ) ) |
| 36 | 1 1 | mulneg1i | |- ( -u _i x. _i ) = -u ( _i x. _i ) |
| 37 | ixi | |- ( _i x. _i ) = -u 1 |
|
| 38 | 37 | negeqi | |- -u ( _i x. _i ) = -u -u 1 |
| 39 | negneg1e1 | |- -u -u 1 = 1 |
|
| 40 | 36 38 39 | 3eqtri | |- ( -u _i x. _i ) = 1 |
| 41 | 40 | oveq1i | |- ( ( -u _i x. _i ) x. A ) = ( 1 x. A ) |
| 42 | negicn | |- -u _i e. CC |
|
| 43 | 42 | a1i | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u _i e. CC ) |
| 44 | 1 | a1i | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> _i e. CC ) |
| 45 | 43 44 2 | mulassd | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( -u _i x. _i ) x. A ) = ( -u _i x. ( _i x. A ) ) ) |
| 46 | mullid | |- ( A e. CC -> ( 1 x. A ) = A ) |
|
| 47 | 46 | adantr | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 1 x. A ) = A ) |
| 48 | 41 45 47 | 3eqtr3a | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( -u _i x. ( _i x. A ) ) = A ) |
| 49 | 48 | fveq2d | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( -u _i x. ( _i x. A ) ) ) = ( Re ` A ) ) |
| 50 | 35 49 | eqtrd | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Im ` ( _i x. A ) ) = ( Re ` A ) ) |
| 51 | 50 | fveq2d | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` ( Im ` ( _i x. A ) ) ) = ( cos ` ( Re ` A ) ) ) |
| 52 | 33 51 | eqtrd | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( ( cos ` ( Im ` ( _i x. A ) ) ) + ( _i x. ( sin ` ( Im ` ( _i x. A ) ) ) ) ) ) = ( cos ` ( Re ` A ) ) ) |
| 53 | 52 | oveq2d | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( exp ` ( Re ` ( _i x. A ) ) ) x. ( Re ` ( ( cos ` ( Im ` ( _i x. A ) ) ) + ( _i x. ( sin ` ( Im ` ( _i x. A ) ) ) ) ) ) ) = ( ( exp ` ( Re ` ( _i x. A ) ) ) x. ( cos ` ( Re ` A ) ) ) ) |
| 54 | 23 32 53 | 3eqtrd | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( exp ` ( _i x. A ) ) ) = ( ( exp ` ( Re ` ( _i x. A ) ) ) x. ( cos ` ( Re ` A ) ) ) ) |
| 55 | 20 54 | breqtrrd | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( Re ` ( exp ` ( _i x. A ) ) ) ) |