This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The algebra scalar lifting function distributes over multiplication. (Contributed by Mario Carneiro, 8-Mar-2015) (Proof shortened by SN, 5-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ascldimul.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| ascldimul.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| ascldimul.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| ascldimul.t | ⊢ × = ( .r ‘ 𝑊 ) | ||
| ascldimul.s | ⊢ · = ( .r ‘ 𝐹 ) | ||
| Assertion | ascldimul | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → ( 𝐴 ‘ ( 𝑅 · 𝑆 ) ) = ( ( 𝐴 ‘ 𝑅 ) × ( 𝐴 ‘ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ascldimul.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| 2 | ascldimul.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | ascldimul.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 4 | ascldimul.t | ⊢ × = ( .r ‘ 𝑊 ) | |
| 5 | ascldimul.s | ⊢ · = ( .r ‘ 𝐹 ) | |
| 6 | assalmod | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) | |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → 𝑊 ∈ LMod ) |
| 8 | simp2 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → 𝑅 ∈ 𝐾 ) | |
| 9 | simp3 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → 𝑆 ∈ 𝐾 ) | |
| 10 | assaring | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) | |
| 11 | 10 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → 𝑊 ∈ Ring ) |
| 12 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 13 | eqid | ⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) | |
| 14 | 12 13 | ringidcl | ⊢ ( 𝑊 ∈ Ring → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
| 15 | 11 14 | syl | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
| 16 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 17 | 12 2 16 3 5 | lmodvsass | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ∧ ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑅 · 𝑆 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) = ( 𝑅 ( ·𝑠 ‘ 𝑊 ) ( 𝑆 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
| 18 | 7 8 9 15 17 | syl13anc | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → ( ( 𝑅 · 𝑆 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) = ( 𝑅 ( ·𝑠 ‘ 𝑊 ) ( 𝑆 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
| 19 | 2 | lmodring | ⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
| 20 | 6 19 | syl | ⊢ ( 𝑊 ∈ AssAlg → 𝐹 ∈ Ring ) |
| 21 | 3 5 | ringcl | ⊢ ( ( 𝐹 ∈ Ring ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → ( 𝑅 · 𝑆 ) ∈ 𝐾 ) |
| 22 | 20 21 | syl3an1 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → ( 𝑅 · 𝑆 ) ∈ 𝐾 ) |
| 23 | 1 2 3 16 13 | asclval | ⊢ ( ( 𝑅 · 𝑆 ) ∈ 𝐾 → ( 𝐴 ‘ ( 𝑅 · 𝑆 ) ) = ( ( 𝑅 · 𝑆 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
| 24 | 22 23 | syl | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → ( 𝐴 ‘ ( 𝑅 · 𝑆 ) ) = ( ( 𝑅 · 𝑆 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
| 25 | 1 2 10 6 3 12 | asclf | ⊢ ( 𝑊 ∈ AssAlg → 𝐴 : 𝐾 ⟶ ( Base ‘ 𝑊 ) ) |
| 26 | 25 | ffvelcdmda | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ 𝐾 ) → ( 𝐴 ‘ 𝑆 ) ∈ ( Base ‘ 𝑊 ) ) |
| 27 | 26 | 3adant2 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → ( 𝐴 ‘ 𝑆 ) ∈ ( Base ‘ 𝑊 ) ) |
| 28 | 1 2 3 12 4 16 | asclmul1 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ ( 𝐴 ‘ 𝑆 ) ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐴 ‘ 𝑅 ) × ( 𝐴 ‘ 𝑆 ) ) = ( 𝑅 ( ·𝑠 ‘ 𝑊 ) ( 𝐴 ‘ 𝑆 ) ) ) |
| 29 | 27 28 | syld3an3 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → ( ( 𝐴 ‘ 𝑅 ) × ( 𝐴 ‘ 𝑆 ) ) = ( 𝑅 ( ·𝑠 ‘ 𝑊 ) ( 𝐴 ‘ 𝑆 ) ) ) |
| 30 | 1 2 3 16 13 | asclval | ⊢ ( 𝑆 ∈ 𝐾 → ( 𝐴 ‘ 𝑆 ) = ( 𝑆 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
| 31 | 30 | 3ad2ant3 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → ( 𝐴 ‘ 𝑆 ) = ( 𝑆 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
| 32 | 31 | oveq2d | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → ( 𝑅 ( ·𝑠 ‘ 𝑊 ) ( 𝐴 ‘ 𝑆 ) ) = ( 𝑅 ( ·𝑠 ‘ 𝑊 ) ( 𝑆 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
| 33 | 29 32 | eqtrd | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → ( ( 𝐴 ‘ 𝑅 ) × ( 𝐴 ‘ 𝑆 ) ) = ( 𝑅 ( ·𝑠 ‘ 𝑊 ) ( 𝑆 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
| 34 | 18 24 33 | 3eqtr4d | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → ( 𝐴 ‘ ( 𝑅 · 𝑆 ) ) = ( ( 𝐴 ‘ 𝑅 ) × ( 𝐴 ‘ 𝑆 ) ) ) |