This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The algebra scalar lifting function distributes over multiplication. (Contributed by Mario Carneiro, 8-Mar-2015) (Proof shortened by SN, 5-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ascldimul.a | |- A = ( algSc ` W ) |
|
| ascldimul.f | |- F = ( Scalar ` W ) |
||
| ascldimul.k | |- K = ( Base ` F ) |
||
| ascldimul.t | |- .X. = ( .r ` W ) |
||
| ascldimul.s | |- .x. = ( .r ` F ) |
||
| Assertion | ascldimul | |- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( A ` ( R .x. S ) ) = ( ( A ` R ) .X. ( A ` S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ascldimul.a | |- A = ( algSc ` W ) |
|
| 2 | ascldimul.f | |- F = ( Scalar ` W ) |
|
| 3 | ascldimul.k | |- K = ( Base ` F ) |
|
| 4 | ascldimul.t | |- .X. = ( .r ` W ) |
|
| 5 | ascldimul.s | |- .x. = ( .r ` F ) |
|
| 6 | assalmod | |- ( W e. AssAlg -> W e. LMod ) |
|
| 7 | 6 | 3ad2ant1 | |- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> W e. LMod ) |
| 8 | simp2 | |- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> R e. K ) |
|
| 9 | simp3 | |- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> S e. K ) |
|
| 10 | assaring | |- ( W e. AssAlg -> W e. Ring ) |
|
| 11 | 10 | 3ad2ant1 | |- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> W e. Ring ) |
| 12 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 13 | eqid | |- ( 1r ` W ) = ( 1r ` W ) |
|
| 14 | 12 13 | ringidcl | |- ( W e. Ring -> ( 1r ` W ) e. ( Base ` W ) ) |
| 15 | 11 14 | syl | |- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( 1r ` W ) e. ( Base ` W ) ) |
| 16 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 17 | 12 2 16 3 5 | lmodvsass | |- ( ( W e. LMod /\ ( R e. K /\ S e. K /\ ( 1r ` W ) e. ( Base ` W ) ) ) -> ( ( R .x. S ) ( .s ` W ) ( 1r ` W ) ) = ( R ( .s ` W ) ( S ( .s ` W ) ( 1r ` W ) ) ) ) |
| 18 | 7 8 9 15 17 | syl13anc | |- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( ( R .x. S ) ( .s ` W ) ( 1r ` W ) ) = ( R ( .s ` W ) ( S ( .s ` W ) ( 1r ` W ) ) ) ) |
| 19 | 2 | lmodring | |- ( W e. LMod -> F e. Ring ) |
| 20 | 6 19 | syl | |- ( W e. AssAlg -> F e. Ring ) |
| 21 | 3 5 | ringcl | |- ( ( F e. Ring /\ R e. K /\ S e. K ) -> ( R .x. S ) e. K ) |
| 22 | 20 21 | syl3an1 | |- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( R .x. S ) e. K ) |
| 23 | 1 2 3 16 13 | asclval | |- ( ( R .x. S ) e. K -> ( A ` ( R .x. S ) ) = ( ( R .x. S ) ( .s ` W ) ( 1r ` W ) ) ) |
| 24 | 22 23 | syl | |- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( A ` ( R .x. S ) ) = ( ( R .x. S ) ( .s ` W ) ( 1r ` W ) ) ) |
| 25 | 1 2 10 6 3 12 | asclf | |- ( W e. AssAlg -> A : K --> ( Base ` W ) ) |
| 26 | 25 | ffvelcdmda | |- ( ( W e. AssAlg /\ S e. K ) -> ( A ` S ) e. ( Base ` W ) ) |
| 27 | 26 | 3adant2 | |- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( A ` S ) e. ( Base ` W ) ) |
| 28 | 1 2 3 12 4 16 | asclmul1 | |- ( ( W e. AssAlg /\ R e. K /\ ( A ` S ) e. ( Base ` W ) ) -> ( ( A ` R ) .X. ( A ` S ) ) = ( R ( .s ` W ) ( A ` S ) ) ) |
| 29 | 27 28 | syld3an3 | |- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( ( A ` R ) .X. ( A ` S ) ) = ( R ( .s ` W ) ( A ` S ) ) ) |
| 30 | 1 2 3 16 13 | asclval | |- ( S e. K -> ( A ` S ) = ( S ( .s ` W ) ( 1r ` W ) ) ) |
| 31 | 30 | 3ad2ant3 | |- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( A ` S ) = ( S ( .s ` W ) ( 1r ` W ) ) ) |
| 32 | 31 | oveq2d | |- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( R ( .s ` W ) ( A ` S ) ) = ( R ( .s ` W ) ( S ( .s ` W ) ( 1r ` W ) ) ) ) |
| 33 | 29 32 | eqtrd | |- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( ( A ` R ) .X. ( A ` S ) ) = ( R ( .s ` W ) ( S ( .s ` W ) ( 1r ` W ) ) ) ) |
| 34 | 18 24 33 | 3eqtr4d | |- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( A ` ( R .x. S ) ) = ( ( A ` R ) .X. ( A ` S ) ) ) |