This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group inverse (negation) of a lifted scalar is the lifted negation of the scalar. (Contributed by AV, 2-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | asclinvg.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| asclinvg.r | ⊢ 𝑅 = ( Scalar ‘ 𝑊 ) | ||
| asclinvg.k | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| asclinvg.i | ⊢ 𝐼 = ( invg ‘ 𝑅 ) | ||
| asclinvg.j | ⊢ 𝐽 = ( invg ‘ 𝑊 ) | ||
| Assertion | asclinvg | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐶 ∈ 𝐵 ) → ( 𝐽 ‘ ( 𝐴 ‘ 𝐶 ) ) = ( 𝐴 ‘ ( 𝐼 ‘ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclinvg.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| 2 | asclinvg.r | ⊢ 𝑅 = ( Scalar ‘ 𝑊 ) | |
| 3 | asclinvg.k | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 4 | asclinvg.i | ⊢ 𝐼 = ( invg ‘ 𝑅 ) | |
| 5 | asclinvg.j | ⊢ 𝐽 = ( invg ‘ 𝑊 ) | |
| 6 | simp2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐶 ∈ 𝐵 ) → 𝑊 ∈ Ring ) | |
| 7 | simp1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐶 ∈ 𝐵 ) → 𝑊 ∈ LMod ) | |
| 8 | 1 2 6 7 | asclghm | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐶 ∈ 𝐵 ) → 𝐴 ∈ ( 𝑅 GrpHom 𝑊 ) ) |
| 9 | simp3 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐶 ∈ 𝐵 ) → 𝐶 ∈ 𝐵 ) | |
| 10 | 3 4 5 | ghminv | ⊢ ( ( 𝐴 ∈ ( 𝑅 GrpHom 𝑊 ) ∧ 𝐶 ∈ 𝐵 ) → ( 𝐴 ‘ ( 𝐼 ‘ 𝐶 ) ) = ( 𝐽 ‘ ( 𝐴 ‘ 𝐶 ) ) ) |
| 11 | 10 | eqcomd | ⊢ ( ( 𝐴 ∈ ( 𝑅 GrpHom 𝑊 ) ∧ 𝐶 ∈ 𝐵 ) → ( 𝐽 ‘ ( 𝐴 ‘ 𝐶 ) ) = ( 𝐴 ‘ ( 𝐼 ‘ 𝐶 ) ) ) |
| 12 | 8 9 11 | syl2anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐶 ∈ 𝐵 ) → ( 𝐽 ‘ ( 𝐴 ‘ 𝐶 ) ) = ( 𝐴 ‘ ( 𝐼 ‘ 𝐶 ) ) ) |