This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a structure has a unique disjointified arrow, then the structure is a terminal category. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | arweutermc | ⊢ ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) → 𝐶 ∈ TermCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | arweuthinc | ⊢ ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) → 𝐶 ∈ ThinCat ) | |
| 2 | euex | ⊢ ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) → ∃ 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ) | |
| 3 | eqid | ⊢ ( Arrow ‘ 𝐶 ) = ( Arrow ‘ 𝐶 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 5 | 3 4 | arwdm | ⊢ ( 𝑎 ∈ ( Arrow ‘ 𝐶 ) → ( doma ‘ 𝑎 ) ∈ ( Base ‘ 𝐶 ) ) |
| 6 | eleq1 | ⊢ ( 𝑥 = ( doma ‘ 𝑎 ) → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↔ ( doma ‘ 𝑎 ) ∈ ( Base ‘ 𝐶 ) ) ) | |
| 7 | 5 5 6 | spcedv | ⊢ ( 𝑎 ∈ ( Arrow ‘ 𝐶 ) → ∃ 𝑥 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 8 | 7 | exlimiv | ⊢ ( ∃ 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) → ∃ 𝑥 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 9 | 2 8 | syl | ⊢ ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) → ∃ 𝑥 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 10 | eqeq1 | ⊢ ( 𝑎 = 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 → ( 𝑎 = 𝑏 ↔ 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 = 𝑏 ) ) | |
| 11 | eqeq2 | ⊢ ( 𝑏 = 〈 𝑦 , 𝑦 , ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) 〉 → ( 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 = 𝑏 ↔ 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 = 〈 𝑦 , 𝑦 , ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) 〉 ) ) | |
| 12 | eumo | ⊢ ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) → ∃* 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ) | |
| 13 | 12 | adantr | ⊢ ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ∃* 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ) |
| 14 | moel | ⊢ ( ∃* 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ↔ ∀ 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∀ 𝑏 ∈ ( Arrow ‘ 𝐶 ) 𝑎 = 𝑏 ) | |
| 15 | 13 14 | sylib | ⊢ ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ∀ 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∀ 𝑏 ∈ ( Arrow ‘ 𝐶 ) 𝑎 = 𝑏 ) |
| 16 | eqid | ⊢ ( Homa ‘ 𝐶 ) = ( Homa ‘ 𝐶 ) | |
| 17 | 3 16 | homarw | ⊢ ( 𝑥 ( Homa ‘ 𝐶 ) 𝑥 ) ⊆ ( Arrow ‘ 𝐶 ) |
| 18 | 1 | adantr | ⊢ ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐶 ∈ ThinCat ) |
| 19 | 18 | thinccd | ⊢ ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐶 ∈ Cat ) |
| 20 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 21 | simprl | ⊢ ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 22 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 23 | 4 20 22 19 21 | catidcl | ⊢ ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 24 | 16 4 19 20 21 21 23 | elhomai2 | ⊢ ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 ∈ ( 𝑥 ( Homa ‘ 𝐶 ) 𝑥 ) ) |
| 25 | 17 24 | sselid | ⊢ ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 ∈ ( Arrow ‘ 𝐶 ) ) |
| 26 | 3 16 | homarw | ⊢ ( 𝑦 ( Homa ‘ 𝐶 ) 𝑦 ) ⊆ ( Arrow ‘ 𝐶 ) |
| 27 | simprr | ⊢ ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 28 | 4 20 22 19 27 | catidcl | ⊢ ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 29 | 16 4 19 20 27 27 28 | elhomai2 | ⊢ ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 〈 𝑦 , 𝑦 , ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) 〉 ∈ ( 𝑦 ( Homa ‘ 𝐶 ) 𝑦 ) ) |
| 30 | 26 29 | sselid | ⊢ ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 〈 𝑦 , 𝑦 , ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) 〉 ∈ ( Arrow ‘ 𝐶 ) ) |
| 31 | 10 11 15 25 30 | rspc2dv | ⊢ ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 = 〈 𝑦 , 𝑦 , ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) 〉 ) |
| 32 | vex | ⊢ 𝑥 ∈ V | |
| 33 | fvex | ⊢ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ V | |
| 34 | 32 32 33 | otth | ⊢ ( 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 = 〈 𝑦 , 𝑦 , ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) 〉 ↔ ( 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ∧ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ) ) |
| 35 | 34 | simp1bi | ⊢ ( 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 = 〈 𝑦 , 𝑦 , ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) 〉 → 𝑥 = 𝑦 ) |
| 36 | 31 35 | syl | ⊢ ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑥 = 𝑦 ) |
| 37 | 36 | ralrimivva | ⊢ ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) 𝑥 = 𝑦 ) |
| 38 | moel | ⊢ ( ∃* 𝑥 𝑥 ∈ ( Base ‘ 𝐶 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) 𝑥 = 𝑦 ) | |
| 39 | 37 38 | sylibr | ⊢ ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) → ∃* 𝑥 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 40 | df-eu | ⊢ ( ∃! 𝑥 𝑥 ∈ ( Base ‘ 𝐶 ) ↔ ( ∃ 𝑥 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ ∃* 𝑥 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) | |
| 41 | 9 39 40 | sylanbrc | ⊢ ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) → ∃! 𝑥 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 42 | 4 | istermc2 | ⊢ ( 𝐶 ∈ TermCat ↔ ( 𝐶 ∈ ThinCat ∧ ∃! 𝑥 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) |
| 43 | 1 41 42 | sylanbrc | ⊢ ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) → 𝐶 ∈ TermCat ) |