This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a structure has a unique disjointified arrow, then the structure is a terminal category. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | arweutermc | |- ( E! a a e. ( Arrow ` C ) -> C e. TermCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | arweuthinc | |- ( E! a a e. ( Arrow ` C ) -> C e. ThinCat ) |
|
| 2 | euex | |- ( E! a a e. ( Arrow ` C ) -> E. a a e. ( Arrow ` C ) ) |
|
| 3 | eqid | |- ( Arrow ` C ) = ( Arrow ` C ) |
|
| 4 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 5 | 3 4 | arwdm | |- ( a e. ( Arrow ` C ) -> ( domA ` a ) e. ( Base ` C ) ) |
| 6 | eleq1 | |- ( x = ( domA ` a ) -> ( x e. ( Base ` C ) <-> ( domA ` a ) e. ( Base ` C ) ) ) |
|
| 7 | 5 5 6 | spcedv | |- ( a e. ( Arrow ` C ) -> E. x x e. ( Base ` C ) ) |
| 8 | 7 | exlimiv | |- ( E. a a e. ( Arrow ` C ) -> E. x x e. ( Base ` C ) ) |
| 9 | 2 8 | syl | |- ( E! a a e. ( Arrow ` C ) -> E. x x e. ( Base ` C ) ) |
| 10 | eqeq1 | |- ( a = <. x , x , ( ( Id ` C ) ` x ) >. -> ( a = b <-> <. x , x , ( ( Id ` C ) ` x ) >. = b ) ) |
|
| 11 | eqeq2 | |- ( b = <. y , y , ( ( Id ` C ) ` y ) >. -> ( <. x , x , ( ( Id ` C ) ` x ) >. = b <-> <. x , x , ( ( Id ` C ) ` x ) >. = <. y , y , ( ( Id ` C ) ` y ) >. ) ) |
|
| 12 | eumo | |- ( E! a a e. ( Arrow ` C ) -> E* a a e. ( Arrow ` C ) ) |
|
| 13 | 12 | adantr | |- ( ( E! a a e. ( Arrow ` C ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> E* a a e. ( Arrow ` C ) ) |
| 14 | moel | |- ( E* a a e. ( Arrow ` C ) <-> A. a e. ( Arrow ` C ) A. b e. ( Arrow ` C ) a = b ) |
|
| 15 | 13 14 | sylib | |- ( ( E! a a e. ( Arrow ` C ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> A. a e. ( Arrow ` C ) A. b e. ( Arrow ` C ) a = b ) |
| 16 | eqid | |- ( HomA ` C ) = ( HomA ` C ) |
|
| 17 | 3 16 | homarw | |- ( x ( HomA ` C ) x ) C_ ( Arrow ` C ) |
| 18 | 1 | adantr | |- ( ( E! a a e. ( Arrow ` C ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> C e. ThinCat ) |
| 19 | 18 | thinccd | |- ( ( E! a a e. ( Arrow ` C ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> C e. Cat ) |
| 20 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 21 | simprl | |- ( ( E! a a e. ( Arrow ` C ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
|
| 22 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 23 | 4 20 22 19 21 | catidcl | |- ( ( E! a a e. ( Arrow ` C ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( Id ` C ) ` x ) e. ( x ( Hom ` C ) x ) ) |
| 24 | 16 4 19 20 21 21 23 | elhomai2 | |- ( ( E! a a e. ( Arrow ` C ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> <. x , x , ( ( Id ` C ) ` x ) >. e. ( x ( HomA ` C ) x ) ) |
| 25 | 17 24 | sselid | |- ( ( E! a a e. ( Arrow ` C ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> <. x , x , ( ( Id ` C ) ` x ) >. e. ( Arrow ` C ) ) |
| 26 | 3 16 | homarw | |- ( y ( HomA ` C ) y ) C_ ( Arrow ` C ) |
| 27 | simprr | |- ( ( E! a a e. ( Arrow ` C ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
|
| 28 | 4 20 22 19 27 | catidcl | |- ( ( E! a a e. ( Arrow ` C ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( Id ` C ) ` y ) e. ( y ( Hom ` C ) y ) ) |
| 29 | 16 4 19 20 27 27 28 | elhomai2 | |- ( ( E! a a e. ( Arrow ` C ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> <. y , y , ( ( Id ` C ) ` y ) >. e. ( y ( HomA ` C ) y ) ) |
| 30 | 26 29 | sselid | |- ( ( E! a a e. ( Arrow ` C ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> <. y , y , ( ( Id ` C ) ` y ) >. e. ( Arrow ` C ) ) |
| 31 | 10 11 15 25 30 | rspc2dv | |- ( ( E! a a e. ( Arrow ` C ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> <. x , x , ( ( Id ` C ) ` x ) >. = <. y , y , ( ( Id ` C ) ` y ) >. ) |
| 32 | vex | |- x e. _V |
|
| 33 | fvex | |- ( ( Id ` C ) ` x ) e. _V |
|
| 34 | 32 32 33 | otth | |- ( <. x , x , ( ( Id ` C ) ` x ) >. = <. y , y , ( ( Id ` C ) ` y ) >. <-> ( x = y /\ x = y /\ ( ( Id ` C ) ` x ) = ( ( Id ` C ) ` y ) ) ) |
| 35 | 34 | simp1bi | |- ( <. x , x , ( ( Id ` C ) ` x ) >. = <. y , y , ( ( Id ` C ) ` y ) >. -> x = y ) |
| 36 | 31 35 | syl | |- ( ( E! a a e. ( Arrow ` C ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x = y ) |
| 37 | 36 | ralrimivva | |- ( E! a a e. ( Arrow ` C ) -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) x = y ) |
| 38 | moel | |- ( E* x x e. ( Base ` C ) <-> A. x e. ( Base ` C ) A. y e. ( Base ` C ) x = y ) |
|
| 39 | 37 38 | sylibr | |- ( E! a a e. ( Arrow ` C ) -> E* x x e. ( Base ` C ) ) |
| 40 | df-eu | |- ( E! x x e. ( Base ` C ) <-> ( E. x x e. ( Base ` C ) /\ E* x x e. ( Base ` C ) ) ) |
|
| 41 | 9 39 40 | sylanbrc | |- ( E! a a e. ( Arrow ` C ) -> E! x x e. ( Base ` C ) ) |
| 42 | 4 | istermc2 | |- ( C e. TermCat <-> ( C e. ThinCat /\ E! x x e. ( Base ` C ) ) ) |
| 43 | 1 41 42 | sylanbrc | |- ( E! a a e. ( Arrow ` C ) -> C e. TermCat ) |