This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 2-variable restricted specialization, using implicit substitution. (Contributed by Scott Fenton, 6-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspc2dv.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜃 ) ) | |
| rspc2dv.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜃 ↔ 𝜒 ) ) | ||
| rspc2dv.3 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐷 𝜓 ) | ||
| rspc2dv.4 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) | ||
| rspc2dv.5 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) | ||
| Assertion | rspc2dv | ⊢ ( 𝜑 → 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2dv.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜃 ) ) | |
| 2 | rspc2dv.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜃 ↔ 𝜒 ) ) | |
| 3 | rspc2dv.3 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐷 𝜓 ) | |
| 4 | rspc2dv.4 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) | |
| 5 | rspc2dv.5 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) | |
| 6 | 1 2 | rspc2va | ⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ∧ ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐷 𝜓 ) → 𝜒 ) |
| 7 | 4 5 3 6 | syl21anc | ⊢ ( 𝜑 → 𝜒 ) |