This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F reaches a fixed point when the countdown function C reaches 0 , F remains fixed after N steps. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | algcvga.1 | |- F : S --> S |
|
| algcvga.2 | |- R = seq 0 ( ( F o. 1st ) , ( NN0 X. { A } ) ) |
||
| algcvga.3 | |- C : S --> NN0 |
||
| algcvga.4 | |- ( z e. S -> ( ( C ` ( F ` z ) ) =/= 0 -> ( C ` ( F ` z ) ) < ( C ` z ) ) ) |
||
| algcvga.5 | |- N = ( C ` A ) |
||
| algfx.6 | |- ( z e. S -> ( ( C ` z ) = 0 -> ( F ` z ) = z ) ) |
||
| Assertion | algfx | |- ( A e. S -> ( K e. ( ZZ>= ` N ) -> ( R ` K ) = ( R ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algcvga.1 | |- F : S --> S |
|
| 2 | algcvga.2 | |- R = seq 0 ( ( F o. 1st ) , ( NN0 X. { A } ) ) |
|
| 3 | algcvga.3 | |- C : S --> NN0 |
|
| 4 | algcvga.4 | |- ( z e. S -> ( ( C ` ( F ` z ) ) =/= 0 -> ( C ` ( F ` z ) ) < ( C ` z ) ) ) |
|
| 5 | algcvga.5 | |- N = ( C ` A ) |
|
| 6 | algfx.6 | |- ( z e. S -> ( ( C ` z ) = 0 -> ( F ` z ) = z ) ) |
|
| 7 | 3 | ffvelcdmi | |- ( A e. S -> ( C ` A ) e. NN0 ) |
| 8 | 5 7 | eqeltrid | |- ( A e. S -> N e. NN0 ) |
| 9 | 8 | nn0zd | |- ( A e. S -> N e. ZZ ) |
| 10 | uzval | |- ( N e. ZZ -> ( ZZ>= ` N ) = { z e. ZZ | N <_ z } ) |
|
| 11 | 10 | eleq2d | |- ( N e. ZZ -> ( K e. ( ZZ>= ` N ) <-> K e. { z e. ZZ | N <_ z } ) ) |
| 12 | 11 | pm5.32i | |- ( ( N e. ZZ /\ K e. ( ZZ>= ` N ) ) <-> ( N e. ZZ /\ K e. { z e. ZZ | N <_ z } ) ) |
| 13 | fveqeq2 | |- ( m = N -> ( ( R ` m ) = ( R ` N ) <-> ( R ` N ) = ( R ` N ) ) ) |
|
| 14 | 13 | imbi2d | |- ( m = N -> ( ( A e. S -> ( R ` m ) = ( R ` N ) ) <-> ( A e. S -> ( R ` N ) = ( R ` N ) ) ) ) |
| 15 | fveqeq2 | |- ( m = k -> ( ( R ` m ) = ( R ` N ) <-> ( R ` k ) = ( R ` N ) ) ) |
|
| 16 | 15 | imbi2d | |- ( m = k -> ( ( A e. S -> ( R ` m ) = ( R ` N ) ) <-> ( A e. S -> ( R ` k ) = ( R ` N ) ) ) ) |
| 17 | fveqeq2 | |- ( m = ( k + 1 ) -> ( ( R ` m ) = ( R ` N ) <-> ( R ` ( k + 1 ) ) = ( R ` N ) ) ) |
|
| 18 | 17 | imbi2d | |- ( m = ( k + 1 ) -> ( ( A e. S -> ( R ` m ) = ( R ` N ) ) <-> ( A e. S -> ( R ` ( k + 1 ) ) = ( R ` N ) ) ) ) |
| 19 | fveqeq2 | |- ( m = K -> ( ( R ` m ) = ( R ` N ) <-> ( R ` K ) = ( R ` N ) ) ) |
|
| 20 | 19 | imbi2d | |- ( m = K -> ( ( A e. S -> ( R ` m ) = ( R ` N ) ) <-> ( A e. S -> ( R ` K ) = ( R ` N ) ) ) ) |
| 21 | eqidd | |- ( A e. S -> ( R ` N ) = ( R ` N ) ) |
|
| 22 | 21 | a1i | |- ( N e. ZZ -> ( A e. S -> ( R ` N ) = ( R ` N ) ) ) |
| 23 | 10 | eleq2d | |- ( N e. ZZ -> ( k e. ( ZZ>= ` N ) <-> k e. { z e. ZZ | N <_ z } ) ) |
| 24 | 23 | pm5.32i | |- ( ( N e. ZZ /\ k e. ( ZZ>= ` N ) ) <-> ( N e. ZZ /\ k e. { z e. ZZ | N <_ z } ) ) |
| 25 | eluznn0 | |- ( ( N e. NN0 /\ k e. ( ZZ>= ` N ) ) -> k e. NN0 ) |
|
| 26 | 8 25 | sylan | |- ( ( A e. S /\ k e. ( ZZ>= ` N ) ) -> k e. NN0 ) |
| 27 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 28 | 0zd | |- ( A e. S -> 0 e. ZZ ) |
|
| 29 | id | |- ( A e. S -> A e. S ) |
|
| 30 | 1 | a1i | |- ( A e. S -> F : S --> S ) |
| 31 | 27 2 28 29 30 | algrp1 | |- ( ( A e. S /\ k e. NN0 ) -> ( R ` ( k + 1 ) ) = ( F ` ( R ` k ) ) ) |
| 32 | 26 31 | syldan | |- ( ( A e. S /\ k e. ( ZZ>= ` N ) ) -> ( R ` ( k + 1 ) ) = ( F ` ( R ` k ) ) ) |
| 33 | 27 2 28 29 30 | algrf | |- ( A e. S -> R : NN0 --> S ) |
| 34 | 33 | ffvelcdmda | |- ( ( A e. S /\ k e. NN0 ) -> ( R ` k ) e. S ) |
| 35 | 26 34 | syldan | |- ( ( A e. S /\ k e. ( ZZ>= ` N ) ) -> ( R ` k ) e. S ) |
| 36 | 1 2 3 4 5 | algcvga | |- ( A e. S -> ( k e. ( ZZ>= ` N ) -> ( C ` ( R ` k ) ) = 0 ) ) |
| 37 | 36 | imp | |- ( ( A e. S /\ k e. ( ZZ>= ` N ) ) -> ( C ` ( R ` k ) ) = 0 ) |
| 38 | fveqeq2 | |- ( z = ( R ` k ) -> ( ( C ` z ) = 0 <-> ( C ` ( R ` k ) ) = 0 ) ) |
|
| 39 | fveq2 | |- ( z = ( R ` k ) -> ( F ` z ) = ( F ` ( R ` k ) ) ) |
|
| 40 | id | |- ( z = ( R ` k ) -> z = ( R ` k ) ) |
|
| 41 | 39 40 | eqeq12d | |- ( z = ( R ` k ) -> ( ( F ` z ) = z <-> ( F ` ( R ` k ) ) = ( R ` k ) ) ) |
| 42 | 38 41 | imbi12d | |- ( z = ( R ` k ) -> ( ( ( C ` z ) = 0 -> ( F ` z ) = z ) <-> ( ( C ` ( R ` k ) ) = 0 -> ( F ` ( R ` k ) ) = ( R ` k ) ) ) ) |
| 43 | 42 6 | vtoclga | |- ( ( R ` k ) e. S -> ( ( C ` ( R ` k ) ) = 0 -> ( F ` ( R ` k ) ) = ( R ` k ) ) ) |
| 44 | 35 37 43 | sylc | |- ( ( A e. S /\ k e. ( ZZ>= ` N ) ) -> ( F ` ( R ` k ) ) = ( R ` k ) ) |
| 45 | 32 44 | eqtrd | |- ( ( A e. S /\ k e. ( ZZ>= ` N ) ) -> ( R ` ( k + 1 ) ) = ( R ` k ) ) |
| 46 | 45 | eqeq1d | |- ( ( A e. S /\ k e. ( ZZ>= ` N ) ) -> ( ( R ` ( k + 1 ) ) = ( R ` N ) <-> ( R ` k ) = ( R ` N ) ) ) |
| 47 | 46 | biimprd | |- ( ( A e. S /\ k e. ( ZZ>= ` N ) ) -> ( ( R ` k ) = ( R ` N ) -> ( R ` ( k + 1 ) ) = ( R ` N ) ) ) |
| 48 | 47 | expcom | |- ( k e. ( ZZ>= ` N ) -> ( A e. S -> ( ( R ` k ) = ( R ` N ) -> ( R ` ( k + 1 ) ) = ( R ` N ) ) ) ) |
| 49 | 48 | adantl | |- ( ( N e. ZZ /\ k e. ( ZZ>= ` N ) ) -> ( A e. S -> ( ( R ` k ) = ( R ` N ) -> ( R ` ( k + 1 ) ) = ( R ` N ) ) ) ) |
| 50 | 24 49 | sylbir | |- ( ( N e. ZZ /\ k e. { z e. ZZ | N <_ z } ) -> ( A e. S -> ( ( R ` k ) = ( R ` N ) -> ( R ` ( k + 1 ) ) = ( R ` N ) ) ) ) |
| 51 | 50 | a2d | |- ( ( N e. ZZ /\ k e. { z e. ZZ | N <_ z } ) -> ( ( A e. S -> ( R ` k ) = ( R ` N ) ) -> ( A e. S -> ( R ` ( k + 1 ) ) = ( R ` N ) ) ) ) |
| 52 | 14 16 18 20 22 51 | uzind3 | |- ( ( N e. ZZ /\ K e. { z e. ZZ | N <_ z } ) -> ( A e. S -> ( R ` K ) = ( R ` N ) ) ) |
| 53 | 12 52 | sylbi | |- ( ( N e. ZZ /\ K e. ( ZZ>= ` N ) ) -> ( A e. S -> ( R ` K ) = ( R ` N ) ) ) |
| 54 | 53 | ex | |- ( N e. ZZ -> ( K e. ( ZZ>= ` N ) -> ( A e. S -> ( R ` K ) = ( R ` N ) ) ) ) |
| 55 | 54 | com3r | |- ( A e. S -> ( N e. ZZ -> ( K e. ( ZZ>= ` N ) -> ( R ` K ) = ( R ` N ) ) ) ) |
| 56 | 9 55 | mpd | |- ( A e. S -> ( K e. ( ZZ>= ` N ) -> ( R ` K ) = ( R ` N ) ) ) |