This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Induction on the upper integers that start at an integer M . The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 26-Jul-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uzind3.1 | ⊢ ( 𝑗 = 𝑀 → ( 𝜑 ↔ 𝜓 ) ) | |
| uzind3.2 | ⊢ ( 𝑗 = 𝑚 → ( 𝜑 ↔ 𝜒 ) ) | ||
| uzind3.3 | ⊢ ( 𝑗 = ( 𝑚 + 1 ) → ( 𝜑 ↔ 𝜃 ) ) | ||
| uzind3.4 | ⊢ ( 𝑗 = 𝑁 → ( 𝜑 ↔ 𝜏 ) ) | ||
| uzind3.5 | ⊢ ( 𝑀 ∈ ℤ → 𝜓 ) | ||
| uzind3.6 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑚 ∈ { 𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘 } ) → ( 𝜒 → 𝜃 ) ) | ||
| Assertion | uzind3 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ { 𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘 } ) → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzind3.1 | ⊢ ( 𝑗 = 𝑀 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | uzind3.2 | ⊢ ( 𝑗 = 𝑚 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | uzind3.3 | ⊢ ( 𝑗 = ( 𝑚 + 1 ) → ( 𝜑 ↔ 𝜃 ) ) | |
| 4 | uzind3.4 | ⊢ ( 𝑗 = 𝑁 → ( 𝜑 ↔ 𝜏 ) ) | |
| 5 | uzind3.5 | ⊢ ( 𝑀 ∈ ℤ → 𝜓 ) | |
| 6 | uzind3.6 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑚 ∈ { 𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘 } ) → ( 𝜒 → 𝜃 ) ) | |
| 7 | breq2 | ⊢ ( 𝑘 = 𝑁 → ( 𝑀 ≤ 𝑘 ↔ 𝑀 ≤ 𝑁 ) ) | |
| 8 | 7 | elrab | ⊢ ( 𝑁 ∈ { 𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘 } ↔ ( 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ) |
| 9 | breq2 | ⊢ ( 𝑘 = 𝑚 → ( 𝑀 ≤ 𝑘 ↔ 𝑀 ≤ 𝑚 ) ) | |
| 10 | 9 | elrab | ⊢ ( 𝑚 ∈ { 𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘 } ↔ ( 𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ) ) |
| 11 | 10 6 | sylan2br | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ) ) → ( 𝜒 → 𝜃 ) ) |
| 12 | 11 | 3impb | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ) → ( 𝜒 → 𝜃 ) ) |
| 13 | 1 2 3 4 5 12 | uzind | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) → 𝜏 ) |
| 14 | 13 | 3expb | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ) → 𝜏 ) |
| 15 | 8 14 | sylan2b | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ { 𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘 } ) → 𝜏 ) |