This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The antiderivative of the logarithm. (Contributed by Mario Carneiro, 21-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | advlog | |- ( RR _D ( x e. RR+ |-> ( x x. ( ( log ` x ) - 1 ) ) ) ) = ( x e. RR+ |-> ( log ` x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reelprrecn | |- RR e. { RR , CC } |
|
| 2 | 1 | a1i | |- ( T. -> RR e. { RR , CC } ) |
| 3 | rpre | |- ( x e. RR+ -> x e. RR ) |
|
| 4 | 3 | adantl | |- ( ( T. /\ x e. RR+ ) -> x e. RR ) |
| 5 | 4 | recnd | |- ( ( T. /\ x e. RR+ ) -> x e. CC ) |
| 6 | 1cnd | |- ( ( T. /\ x e. RR+ ) -> 1 e. CC ) |
|
| 7 | recn | |- ( x e. RR -> x e. CC ) |
|
| 8 | 7 | adantl | |- ( ( T. /\ x e. RR ) -> x e. CC ) |
| 9 | 1red | |- ( ( T. /\ x e. RR ) -> 1 e. RR ) |
|
| 10 | 2 | dvmptid | |- ( T. -> ( RR _D ( x e. RR |-> x ) ) = ( x e. RR |-> 1 ) ) |
| 11 | rpssre | |- RR+ C_ RR |
|
| 12 | 11 | a1i | |- ( T. -> RR+ C_ RR ) |
| 13 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 14 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 15 | ioorp | |- ( 0 (,) +oo ) = RR+ |
|
| 16 | iooretop | |- ( 0 (,) +oo ) e. ( topGen ` ran (,) ) |
|
| 17 | 15 16 | eqeltrri | |- RR+ e. ( topGen ` ran (,) ) |
| 18 | 17 | a1i | |- ( T. -> RR+ e. ( topGen ` ran (,) ) ) |
| 19 | 2 8 9 10 12 13 14 18 | dvmptres | |- ( T. -> ( RR _D ( x e. RR+ |-> x ) ) = ( x e. RR+ |-> 1 ) ) |
| 20 | relogcl | |- ( x e. RR+ -> ( log ` x ) e. RR ) |
|
| 21 | 20 | adantl | |- ( ( T. /\ x e. RR+ ) -> ( log ` x ) e. RR ) |
| 22 | peano2rem | |- ( ( log ` x ) e. RR -> ( ( log ` x ) - 1 ) e. RR ) |
|
| 23 | 21 22 | syl | |- ( ( T. /\ x e. RR+ ) -> ( ( log ` x ) - 1 ) e. RR ) |
| 24 | 23 | recnd | |- ( ( T. /\ x e. RR+ ) -> ( ( log ` x ) - 1 ) e. CC ) |
| 25 | rpreccl | |- ( x e. RR+ -> ( 1 / x ) e. RR+ ) |
|
| 26 | 25 | adantl | |- ( ( T. /\ x e. RR+ ) -> ( 1 / x ) e. RR+ ) |
| 27 | 26 | rpcnd | |- ( ( T. /\ x e. RR+ ) -> ( 1 / x ) e. CC ) |
| 28 | 21 | recnd | |- ( ( T. /\ x e. RR+ ) -> ( log ` x ) e. CC ) |
| 29 | relogf1o | |- ( log |` RR+ ) : RR+ -1-1-onto-> RR |
|
| 30 | f1of | |- ( ( log |` RR+ ) : RR+ -1-1-onto-> RR -> ( log |` RR+ ) : RR+ --> RR ) |
|
| 31 | 29 30 | mp1i | |- ( T. -> ( log |` RR+ ) : RR+ --> RR ) |
| 32 | 31 | feqmptd | |- ( T. -> ( log |` RR+ ) = ( x e. RR+ |-> ( ( log |` RR+ ) ` x ) ) ) |
| 33 | fvres | |- ( x e. RR+ -> ( ( log |` RR+ ) ` x ) = ( log ` x ) ) |
|
| 34 | 33 | mpteq2ia | |- ( x e. RR+ |-> ( ( log |` RR+ ) ` x ) ) = ( x e. RR+ |-> ( log ` x ) ) |
| 35 | 32 34 | eqtrdi | |- ( T. -> ( log |` RR+ ) = ( x e. RR+ |-> ( log ` x ) ) ) |
| 36 | 35 | oveq2d | |- ( T. -> ( RR _D ( log |` RR+ ) ) = ( RR _D ( x e. RR+ |-> ( log ` x ) ) ) ) |
| 37 | dvrelog | |- ( RR _D ( log |` RR+ ) ) = ( x e. RR+ |-> ( 1 / x ) ) |
|
| 38 | 36 37 | eqtr3di | |- ( T. -> ( RR _D ( x e. RR+ |-> ( log ` x ) ) ) = ( x e. RR+ |-> ( 1 / x ) ) ) |
| 39 | 0cnd | |- ( ( T. /\ x e. RR+ ) -> 0 e. CC ) |
|
| 40 | 1cnd | |- ( ( T. /\ x e. RR ) -> 1 e. CC ) |
|
| 41 | 0cnd | |- ( ( T. /\ x e. RR ) -> 0 e. CC ) |
|
| 42 | 1cnd | |- ( T. -> 1 e. CC ) |
|
| 43 | 2 42 | dvmptc | |- ( T. -> ( RR _D ( x e. RR |-> 1 ) ) = ( x e. RR |-> 0 ) ) |
| 44 | 2 40 41 43 12 13 14 18 | dvmptres | |- ( T. -> ( RR _D ( x e. RR+ |-> 1 ) ) = ( x e. RR+ |-> 0 ) ) |
| 45 | 2 28 27 38 6 39 44 | dvmptsub | |- ( T. -> ( RR _D ( x e. RR+ |-> ( ( log ` x ) - 1 ) ) ) = ( x e. RR+ |-> ( ( 1 / x ) - 0 ) ) ) |
| 46 | 27 | subid1d | |- ( ( T. /\ x e. RR+ ) -> ( ( 1 / x ) - 0 ) = ( 1 / x ) ) |
| 47 | 46 | mpteq2dva | |- ( T. -> ( x e. RR+ |-> ( ( 1 / x ) - 0 ) ) = ( x e. RR+ |-> ( 1 / x ) ) ) |
| 48 | 45 47 | eqtrd | |- ( T. -> ( RR _D ( x e. RR+ |-> ( ( log ` x ) - 1 ) ) ) = ( x e. RR+ |-> ( 1 / x ) ) ) |
| 49 | 2 5 6 19 24 27 48 | dvmptmul | |- ( T. -> ( RR _D ( x e. RR+ |-> ( x x. ( ( log ` x ) - 1 ) ) ) ) = ( x e. RR+ |-> ( ( 1 x. ( ( log ` x ) - 1 ) ) + ( ( 1 / x ) x. x ) ) ) ) |
| 50 | 24 | mullidd | |- ( ( T. /\ x e. RR+ ) -> ( 1 x. ( ( log ` x ) - 1 ) ) = ( ( log ` x ) - 1 ) ) |
| 51 | rpne0 | |- ( x e. RR+ -> x =/= 0 ) |
|
| 52 | 51 | adantl | |- ( ( T. /\ x e. RR+ ) -> x =/= 0 ) |
| 53 | 5 52 | recid2d | |- ( ( T. /\ x e. RR+ ) -> ( ( 1 / x ) x. x ) = 1 ) |
| 54 | 50 53 | oveq12d | |- ( ( T. /\ x e. RR+ ) -> ( ( 1 x. ( ( log ` x ) - 1 ) ) + ( ( 1 / x ) x. x ) ) = ( ( ( log ` x ) - 1 ) + 1 ) ) |
| 55 | ax-1cn | |- 1 e. CC |
|
| 56 | npcan | |- ( ( ( log ` x ) e. CC /\ 1 e. CC ) -> ( ( ( log ` x ) - 1 ) + 1 ) = ( log ` x ) ) |
|
| 57 | 28 55 56 | sylancl | |- ( ( T. /\ x e. RR+ ) -> ( ( ( log ` x ) - 1 ) + 1 ) = ( log ` x ) ) |
| 58 | 54 57 | eqtrd | |- ( ( T. /\ x e. RR+ ) -> ( ( 1 x. ( ( log ` x ) - 1 ) ) + ( ( 1 / x ) x. x ) ) = ( log ` x ) ) |
| 59 | 58 | mpteq2dva | |- ( T. -> ( x e. RR+ |-> ( ( 1 x. ( ( log ` x ) - 1 ) ) + ( ( 1 / x ) x. x ) ) ) = ( x e. RR+ |-> ( log ` x ) ) ) |
| 60 | 49 59 | eqtrd | |- ( T. -> ( RR _D ( x e. RR+ |-> ( x x. ( ( log ` x ) - 1 ) ) ) ) = ( x e. RR+ |-> ( log ` x ) ) ) |
| 61 | 60 | mptru | |- ( RR _D ( x e. RR+ |-> ( x x. ( ( log ` x ) - 1 ) ) ) ) = ( x e. RR+ |-> ( log ` x ) ) |