This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The adjoint of the scalar product of an operator. Theorem 3.11(ii) of Beran p. 106. (Contributed by NM, 21-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adjmul | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) → ( adjℎ ‘ ( 𝐴 ·op 𝑇 ) ) = ( ( ∗ ‘ 𝐴 ) ·op ( adjℎ ‘ 𝑇 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmadjop | ⊢ ( 𝑇 ∈ dom adjℎ → 𝑇 : ℋ ⟶ ℋ ) | |
| 2 | homulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) → ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ) |
| 4 | cjcl | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) | |
| 5 | dmadjrn | ⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ) | |
| 6 | dmadjop | ⊢ ( ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ) | |
| 7 | 5 6 | syl | ⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ) |
| 8 | homulcl | ⊢ ( ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ) → ( ( ∗ ‘ 𝐴 ) ·op ( adjℎ ‘ 𝑇 ) ) : ℋ ⟶ ℋ ) | |
| 9 | 4 7 8 | syl2an | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) → ( ( ∗ ‘ 𝐴 ) ·op ( adjℎ ‘ 𝑇 ) ) : ℋ ⟶ ℋ ) |
| 10 | adj2 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) | |
| 11 | 10 | 3expb | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
| 12 | 11 | adantll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
| 13 | 12 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) = ( 𝐴 · ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 14 | 1 | ffvelcdmda | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 15 | ax-his3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) = ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) | |
| 16 | 14 15 | syl3an2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ) ∧ 𝑦 ∈ ℋ ) → ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) = ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 17 | 16 | 3exp | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ) → ( 𝑦 ∈ ℋ → ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) = ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) ) ) |
| 18 | 17 | expd | ⊢ ( 𝐴 ∈ ℂ → ( 𝑇 ∈ dom adjℎ → ( 𝑥 ∈ ℋ → ( 𝑦 ∈ ℋ → ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) = ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) ) ) ) |
| 19 | 18 | imp43 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) = ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 20 | simpll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → 𝐴 ∈ ℂ ) | |
| 21 | simprl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → 𝑥 ∈ ℋ ) | |
| 22 | adjcl | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑦 ∈ ℋ ) → ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ∈ ℋ ) | |
| 23 | 22 | ad2ant2l | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ∈ ℋ ) |
| 24 | his52 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ∈ ℋ ) → ( 𝑥 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) = ( 𝐴 · ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) | |
| 25 | 20 21 23 24 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) = ( 𝐴 · ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 26 | 13 19 25 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 27 | homval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) | |
| 28 | 1 27 | syl3an2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 29 | 28 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 30 | 29 | adantrr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 31 | 30 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) ) |
| 32 | id | ⊢ ( 𝑦 ∈ ℋ → 𝑦 ∈ ℋ ) | |
| 33 | homval | ⊢ ( ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( ∗ ‘ 𝐴 ) ·op ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 ) = ( ( ∗ ‘ 𝐴 ) ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) | |
| 34 | 4 7 32 33 | syl3an | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ∧ 𝑦 ∈ ℋ ) → ( ( ( ∗ ‘ 𝐴 ) ·op ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 ) = ( ( ∗ ‘ 𝐴 ) ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
| 35 | 34 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ 𝑦 ∈ ℋ ) → ( ( ( ∗ ‘ 𝐴 ) ·op ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 ) = ( ( ∗ ‘ 𝐴 ) ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
| 36 | 35 | adantrl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( ∗ ‘ 𝐴 ) ·op ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 ) = ( ( ∗ ‘ 𝐴 ) ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
| 37 | 36 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( ( ( ∗ ‘ 𝐴 ) ·op ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 38 | 26 31 37 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( ( ∗ ‘ 𝐴 ) ·op ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 ) ) ) |
| 39 | 38 | ralrimivva | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( ( ∗ ‘ 𝐴 ) ·op ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 ) ) ) |
| 40 | adjeq | ⊢ ( ( ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ∧ ( ( ∗ ‘ 𝐴 ) ·op ( adjℎ ‘ 𝑇 ) ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( ( ∗ ‘ 𝐴 ) ·op ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 ) ) ) → ( adjℎ ‘ ( 𝐴 ·op 𝑇 ) ) = ( ( ∗ ‘ 𝐴 ) ·op ( adjℎ ‘ 𝑇 ) ) ) | |
| 41 | 3 9 39 40 | syl3anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adjℎ ) → ( adjℎ ‘ ( 𝐴 ·op 𝑇 ) ) = ( ( ∗ ‘ 𝐴 ) ·op ( adjℎ ‘ 𝑇 ) ) ) |