This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A property that determines the adjoint of a Hilbert space operator. (Contributed by NM, 20-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adjeq | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ) → ( adjℎ ‘ 𝑇 ) = 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funadj | ⊢ Fun adjℎ | |
| 2 | df-adjh | ⊢ adjℎ = { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑧 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑤 ‘ 𝑦 ) ) ) } | |
| 3 | 2 | eleq2i | ⊢ ( 〈 𝑇 , 𝑆 〉 ∈ adjℎ ↔ 〈 𝑇 , 𝑆 〉 ∈ { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑧 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑤 ‘ 𝑦 ) ) ) } ) |
| 4 | ax-hilex | ⊢ ℋ ∈ V | |
| 5 | fex | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ℋ ∈ V ) → 𝑇 ∈ V ) | |
| 6 | 4 5 | mpan2 | ⊢ ( 𝑇 : ℋ ⟶ ℋ → 𝑇 ∈ V ) |
| 7 | fex | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ ℋ ∈ V ) → 𝑆 ∈ V ) | |
| 8 | 4 7 | mpan2 | ⊢ ( 𝑆 : ℋ ⟶ ℋ → 𝑆 ∈ V ) |
| 9 | feq1 | ⊢ ( 𝑧 = 𝑇 → ( 𝑧 : ℋ ⟶ ℋ ↔ 𝑇 : ℋ ⟶ ℋ ) ) | |
| 10 | fveq1 | ⊢ ( 𝑧 = 𝑇 → ( 𝑧 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) | |
| 11 | 10 | oveq1d | ⊢ ( 𝑧 = 𝑇 → ( ( 𝑧 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 12 | 11 | eqeq1d | ⊢ ( 𝑧 = 𝑇 → ( ( ( 𝑧 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑤 ‘ 𝑦 ) ) ↔ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑤 ‘ 𝑦 ) ) ) ) |
| 13 | 12 | 2ralbidv | ⊢ ( 𝑧 = 𝑇 → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑧 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑤 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑤 ‘ 𝑦 ) ) ) ) |
| 14 | 9 13 | 3anbi13d | ⊢ ( 𝑧 = 𝑇 → ( ( 𝑧 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑧 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑤 ‘ 𝑦 ) ) ) ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑤 ‘ 𝑦 ) ) ) ) ) |
| 15 | feq1 | ⊢ ( 𝑤 = 𝑆 → ( 𝑤 : ℋ ⟶ ℋ ↔ 𝑆 : ℋ ⟶ ℋ ) ) | |
| 16 | fveq1 | ⊢ ( 𝑤 = 𝑆 → ( 𝑤 ‘ 𝑦 ) = ( 𝑆 ‘ 𝑦 ) ) | |
| 17 | 16 | oveq2d | ⊢ ( 𝑤 = 𝑆 → ( 𝑥 ·ih ( 𝑤 ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ) |
| 18 | 17 | eqeq2d | ⊢ ( 𝑤 = 𝑆 → ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑤 ‘ 𝑦 ) ) ↔ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ) ) |
| 19 | 18 | 2ralbidv | ⊢ ( 𝑤 = 𝑆 → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑤 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ) ) |
| 20 | 15 19 | 3anbi23d | ⊢ ( 𝑤 = 𝑆 → ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑤 ‘ 𝑦 ) ) ) ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ) ) ) |
| 21 | 14 20 | opelopabg | ⊢ ( ( 𝑇 ∈ V ∧ 𝑆 ∈ V ) → ( 〈 𝑇 , 𝑆 〉 ∈ { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑧 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑤 ‘ 𝑦 ) ) ) } ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ) ) ) |
| 22 | 6 8 21 | syl2an | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ) → ( 〈 𝑇 , 𝑆 〉 ∈ { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 : ℋ ⟶ ℋ ∧ 𝑤 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑧 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑤 ‘ 𝑦 ) ) ) } ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ) ) ) |
| 23 | 3 22 | bitrid | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ) → ( 〈 𝑇 , 𝑆 〉 ∈ adjℎ ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ) ) ) |
| 24 | df-3an | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ) ↔ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ) ) | |
| 25 | 24 | baibr | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ) ) ) |
| 26 | 23 25 | bitr4d | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ) → ( 〈 𝑇 , 𝑆 〉 ∈ adjℎ ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ) ) |
| 27 | 26 | biimp3ar | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ) → 〈 𝑇 , 𝑆 〉 ∈ adjℎ ) |
| 28 | funopfv | ⊢ ( Fun adjℎ → ( 〈 𝑇 , 𝑆 〉 ∈ adjℎ → ( adjℎ ‘ 𝑇 ) = 𝑆 ) ) | |
| 29 | 1 27 28 | mpsyl | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ) → ( adjℎ ‘ 𝑇 ) = 𝑆 ) |