This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of an adjoint Hilbert space operator. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adj2 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adj1 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐵 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ·ih 𝐴 ) ) | |
| 2 | simp2 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → 𝐵 ∈ ℋ ) | |
| 3 | dmadjop | ⊢ ( 𝑇 ∈ dom adjℎ → 𝑇 : ℋ ⟶ ℋ ) | |
| 4 | 3 | ffvelcdmda | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) → ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) |
| 5 | 4 | 3adant2 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) |
| 6 | ax-his1 | ⊢ ( ( 𝐵 ∈ ℋ ∧ ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) → ( 𝐵 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ∗ ‘ ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ) ) | |
| 7 | 2 5 6 | syl2anc | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐵 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ∗ ‘ ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ) ) |
| 8 | adjcl | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ) → ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ∈ ℋ ) | |
| 9 | 8 | 3adant3 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ∈ ℋ ) |
| 10 | simp3 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → 𝐴 ∈ ℋ ) | |
| 11 | ax-his1 | ⊢ ( ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ·ih 𝐴 ) = ( ∗ ‘ ( 𝐴 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ) ) ) | |
| 12 | 9 10 11 | syl2anc | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ·ih 𝐴 ) = ( ∗ ‘ ( 𝐴 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ) ) ) |
| 13 | 1 7 12 | 3eqtr3d | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ∗ ‘ ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ) = ( ∗ ‘ ( 𝐴 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ) ) ) |
| 14 | hicl | ⊢ ( ( ( 𝑇 ‘ 𝐴 ) ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ∈ ℂ ) | |
| 15 | 5 2 14 | syl2anc | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ∈ ℂ ) |
| 16 | hicl | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ∈ ℋ ) → ( 𝐴 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ) ∈ ℂ ) | |
| 17 | 10 9 16 | syl2anc | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ) ∈ ℂ ) |
| 18 | cj11 | ⊢ ( ( ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ∈ ℂ ∧ ( 𝐴 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ) ∈ ℂ ) → ( ( ∗ ‘ ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ) = ( ∗ ‘ ( 𝐴 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ) ) ↔ ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ) ) ) | |
| 19 | 15 17 18 | syl2anc | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ∗ ‘ ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ) = ( ∗ ‘ ( 𝐴 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ) ) ↔ ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ) ) ) |
| 20 | 13 19 | mpbid | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ) ) |
| 21 | 20 | 3com23 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐵 ) ) ) |