This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is the union of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unifpw | ⊢ ∪ ( 𝒫 𝐴 ∩ Fin ) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 | ⊢ ( 𝒫 𝐴 ∩ Fin ) ⊆ 𝒫 𝐴 | |
| 2 | 1 | unissi | ⊢ ∪ ( 𝒫 𝐴 ∩ Fin ) ⊆ ∪ 𝒫 𝐴 |
| 3 | unipw | ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 4 | 2 3 | sseqtri | ⊢ ∪ ( 𝒫 𝐴 ∩ Fin ) ⊆ 𝐴 |
| 5 | 4 | sseli | ⊢ ( 𝑎 ∈ ∪ ( 𝒫 𝐴 ∩ Fin ) → 𝑎 ∈ 𝐴 ) |
| 6 | snelpwi | ⊢ ( 𝑎 ∈ 𝐴 → { 𝑎 } ∈ 𝒫 𝐴 ) | |
| 7 | snfi | ⊢ { 𝑎 } ∈ Fin | |
| 8 | 7 | a1i | ⊢ ( 𝑎 ∈ 𝐴 → { 𝑎 } ∈ Fin ) |
| 9 | 6 8 | elind | ⊢ ( 𝑎 ∈ 𝐴 → { 𝑎 } ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 10 | elssuni | ⊢ ( { 𝑎 } ∈ ( 𝒫 𝐴 ∩ Fin ) → { 𝑎 } ⊆ ∪ ( 𝒫 𝐴 ∩ Fin ) ) | |
| 11 | 9 10 | syl | ⊢ ( 𝑎 ∈ 𝐴 → { 𝑎 } ⊆ ∪ ( 𝒫 𝐴 ∩ Fin ) ) |
| 12 | snidg | ⊢ ( 𝑎 ∈ 𝐴 → 𝑎 ∈ { 𝑎 } ) | |
| 13 | 11 12 | sseldd | ⊢ ( 𝑎 ∈ 𝐴 → 𝑎 ∈ ∪ ( 𝒫 𝐴 ∩ Fin ) ) |
| 14 | 5 13 | impbii | ⊢ ( 𝑎 ∈ ∪ ( 𝒫 𝐴 ∩ Fin ) ↔ 𝑎 ∈ 𝐴 ) |
| 15 | 14 | eqriv | ⊢ ∪ ( 𝒫 𝐴 ∩ Fin ) = 𝐴 |