This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an algebraic closure system, if S and T have the same closure and S is independent, then there is a map f from T into the set of finite subsets of S such that S equals the union of ran f . This is proven by taking the map f from acsmapd and observing that, since S and T have the same closure, the closure of U. ran f must contain S . Since S is independent, by mrissmrcd , U. ran f must equal S . See Section II.5 in Cohn p. 81 to 82. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | acsmap2d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( ACS ‘ 𝑋 ) ) | |
| acsmap2d.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | ||
| acsmap2d.3 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | ||
| acsmap2d.4 | ⊢ ( 𝜑 → 𝑆 ∈ 𝐼 ) | ||
| acsmap2d.5 | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑋 ) | ||
| acsmap2d.6 | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑆 ) = ( 𝑁 ‘ 𝑇 ) ) | ||
| Assertion | acsmap2d | ⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsmap2d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( ACS ‘ 𝑋 ) ) | |
| 2 | acsmap2d.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | |
| 3 | acsmap2d.3 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | |
| 4 | acsmap2d.4 | ⊢ ( 𝜑 → 𝑆 ∈ 𝐼 ) | |
| 5 | acsmap2d.5 | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑋 ) | |
| 6 | acsmap2d.6 | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑆 ) = ( 𝑁 ‘ 𝑇 ) ) | |
| 7 | 1 | acsmred | ⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 8 | 3 7 4 | mrissd | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
| 9 | 7 2 5 | mrcssidd | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑁 ‘ 𝑇 ) ) |
| 10 | 9 6 | sseqtrrd | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑁 ‘ 𝑆 ) ) |
| 11 | 1 2 8 10 | acsmapd | ⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) |
| 12 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ) | |
| 13 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 14 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → 𝑆 ∈ 𝐼 ) |
| 15 | 3 13 14 | mrissd | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → 𝑆 ⊆ 𝑋 ) |
| 16 | 13 2 15 | mrcssidd | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → 𝑆 ⊆ ( 𝑁 ‘ 𝑆 ) ) |
| 17 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → ( 𝑁 ‘ 𝑆 ) = ( 𝑁 ‘ 𝑇 ) ) |
| 18 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) | |
| 19 | 13 2 | mrcssvd | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → ( 𝑁 ‘ ∪ ran 𝑓 ) ⊆ 𝑋 ) |
| 20 | 13 2 18 19 | mrcssd | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → ( 𝑁 ‘ 𝑇 ) ⊆ ( 𝑁 ‘ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) |
| 21 | frn | ⊢ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) → ran 𝑓 ⊆ ( 𝒫 𝑆 ∩ Fin ) ) | |
| 22 | 21 | unissd | ⊢ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) → ∪ ran 𝑓 ⊆ ∪ ( 𝒫 𝑆 ∩ Fin ) ) |
| 23 | unifpw | ⊢ ∪ ( 𝒫 𝑆 ∩ Fin ) = 𝑆 | |
| 24 | 22 23 | sseqtrdi | ⊢ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) → ∪ ran 𝑓 ⊆ 𝑆 ) |
| 25 | 24 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → ∪ ran 𝑓 ⊆ 𝑆 ) |
| 26 | 25 15 | sstrd | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → ∪ ran 𝑓 ⊆ 𝑋 ) |
| 27 | 13 2 26 | mrcidmd | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → ( 𝑁 ‘ ( 𝑁 ‘ ∪ ran 𝑓 ) ) = ( 𝑁 ‘ ∪ ran 𝑓 ) ) |
| 28 | 20 27 | sseqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → ( 𝑁 ‘ 𝑇 ) ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) |
| 29 | 17 28 | eqsstrd | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → ( 𝑁 ‘ 𝑆 ) ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) |
| 30 | 16 29 | sstrd | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → 𝑆 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) |
| 31 | 13 2 3 30 25 14 | mrissmrcd | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → 𝑆 = ∪ ran 𝑓 ) |
| 32 | 12 31 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) |
| 33 | 32 | ex | ⊢ ( 𝜑 → ( ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) → ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) ) |
| 34 | 33 | eximdv | ⊢ ( 𝜑 → ( ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) ) |
| 35 | 11 34 | mpd | ⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) |