This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an algebraic closure system, if T is contained in the closure of S , there is a map f from T into the set of finite subsets of S such that the closure of U. ran f contains T . This is proven by applying acsficl2d to each element of T . See Section II.5 in Cohn p. 81 to 82. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | acsmapd.1 | |- ( ph -> A e. ( ACS ` X ) ) |
|
| acsmapd.2 | |- N = ( mrCls ` A ) |
||
| acsmapd.3 | |- ( ph -> S C_ X ) |
||
| acsmapd.4 | |- ( ph -> T C_ ( N ` S ) ) |
||
| Assertion | acsmapd | |- ( ph -> E. f ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsmapd.1 | |- ( ph -> A e. ( ACS ` X ) ) |
|
| 2 | acsmapd.2 | |- N = ( mrCls ` A ) |
|
| 3 | acsmapd.3 | |- ( ph -> S C_ X ) |
|
| 4 | acsmapd.4 | |- ( ph -> T C_ ( N ` S ) ) |
|
| 5 | fvex | |- ( N ` S ) e. _V |
|
| 6 | 5 | ssex | |- ( T C_ ( N ` S ) -> T e. _V ) |
| 7 | 4 6 | syl | |- ( ph -> T e. _V ) |
| 8 | 4 | sseld | |- ( ph -> ( x e. T -> x e. ( N ` S ) ) ) |
| 9 | 1 2 3 | acsficl2d | |- ( ph -> ( x e. ( N ` S ) <-> E. y e. ( ~P S i^i Fin ) x e. ( N ` y ) ) ) |
| 10 | 8 9 | sylibd | |- ( ph -> ( x e. T -> E. y e. ( ~P S i^i Fin ) x e. ( N ` y ) ) ) |
| 11 | 10 | ralrimiv | |- ( ph -> A. x e. T E. y e. ( ~P S i^i Fin ) x e. ( N ` y ) ) |
| 12 | fveq2 | |- ( y = ( f ` x ) -> ( N ` y ) = ( N ` ( f ` x ) ) ) |
|
| 13 | 12 | eleq2d | |- ( y = ( f ` x ) -> ( x e. ( N ` y ) <-> x e. ( N ` ( f ` x ) ) ) ) |
| 14 | 13 | ac6sg | |- ( T e. _V -> ( A. x e. T E. y e. ( ~P S i^i Fin ) x e. ( N ` y ) -> E. f ( f : T --> ( ~P S i^i Fin ) /\ A. x e. T x e. ( N ` ( f ` x ) ) ) ) ) |
| 15 | 7 11 14 | sylc | |- ( ph -> E. f ( f : T --> ( ~P S i^i Fin ) /\ A. x e. T x e. ( N ` ( f ` x ) ) ) ) |
| 16 | simprl | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ A. x e. T x e. ( N ` ( f ` x ) ) ) ) -> f : T --> ( ~P S i^i Fin ) ) |
|
| 17 | nfv | |- F/ x ph |
|
| 18 | nfv | |- F/ x f : T --> ( ~P S i^i Fin ) |
|
| 19 | nfra1 | |- F/ x A. x e. T x e. ( N ` ( f ` x ) ) |
|
| 20 | 18 19 | nfan | |- F/ x ( f : T --> ( ~P S i^i Fin ) /\ A. x e. T x e. ( N ` ( f ` x ) ) ) |
| 21 | 17 20 | nfan | |- F/ x ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ A. x e. T x e. ( N ` ( f ` x ) ) ) ) |
| 22 | 1 | ad2antrr | |- ( ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ A. x e. T x e. ( N ` ( f ` x ) ) ) ) /\ x e. T ) -> A e. ( ACS ` X ) ) |
| 23 | 22 | acsmred | |- ( ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ A. x e. T x e. ( N ` ( f ` x ) ) ) ) /\ x e. T ) -> A e. ( Moore ` X ) ) |
| 24 | simplrl | |- ( ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ A. x e. T x e. ( N ` ( f ` x ) ) ) ) /\ x e. T ) -> f : T --> ( ~P S i^i Fin ) ) |
|
| 25 | 24 | ffnd | |- ( ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ A. x e. T x e. ( N ` ( f ` x ) ) ) ) /\ x e. T ) -> f Fn T ) |
| 26 | fnfvelrn | |- ( ( f Fn T /\ x e. T ) -> ( f ` x ) e. ran f ) |
|
| 27 | 25 26 | sylancom | |- ( ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ A. x e. T x e. ( N ` ( f ` x ) ) ) ) /\ x e. T ) -> ( f ` x ) e. ran f ) |
| 28 | 27 | snssd | |- ( ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ A. x e. T x e. ( N ` ( f ` x ) ) ) ) /\ x e. T ) -> { ( f ` x ) } C_ ran f ) |
| 29 | 28 | unissd | |- ( ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ A. x e. T x e. ( N ` ( f ` x ) ) ) ) /\ x e. T ) -> U. { ( f ` x ) } C_ U. ran f ) |
| 30 | frn | |- ( f : T --> ( ~P S i^i Fin ) -> ran f C_ ( ~P S i^i Fin ) ) |
|
| 31 | 30 | unissd | |- ( f : T --> ( ~P S i^i Fin ) -> U. ran f C_ U. ( ~P S i^i Fin ) ) |
| 32 | unifpw | |- U. ( ~P S i^i Fin ) = S |
|
| 33 | 31 32 | sseqtrdi | |- ( f : T --> ( ~P S i^i Fin ) -> U. ran f C_ S ) |
| 34 | 24 33 | syl | |- ( ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ A. x e. T x e. ( N ` ( f ` x ) ) ) ) /\ x e. T ) -> U. ran f C_ S ) |
| 35 | 3 | ad2antrr | |- ( ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ A. x e. T x e. ( N ` ( f ` x ) ) ) ) /\ x e. T ) -> S C_ X ) |
| 36 | 34 35 | sstrd | |- ( ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ A. x e. T x e. ( N ` ( f ` x ) ) ) ) /\ x e. T ) -> U. ran f C_ X ) |
| 37 | 23 2 29 36 | mrcssd | |- ( ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ A. x e. T x e. ( N ` ( f ` x ) ) ) ) /\ x e. T ) -> ( N ` U. { ( f ` x ) } ) C_ ( N ` U. ran f ) ) |
| 38 | simprr | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ A. x e. T x e. ( N ` ( f ` x ) ) ) ) -> A. x e. T x e. ( N ` ( f ` x ) ) ) |
|
| 39 | 38 | r19.21bi | |- ( ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ A. x e. T x e. ( N ` ( f ` x ) ) ) ) /\ x e. T ) -> x e. ( N ` ( f ` x ) ) ) |
| 40 | fvex | |- ( f ` x ) e. _V |
|
| 41 | 40 | unisn | |- U. { ( f ` x ) } = ( f ` x ) |
| 42 | 41 | fveq2i | |- ( N ` U. { ( f ` x ) } ) = ( N ` ( f ` x ) ) |
| 43 | 39 42 | eleqtrrdi | |- ( ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ A. x e. T x e. ( N ` ( f ` x ) ) ) ) /\ x e. T ) -> x e. ( N ` U. { ( f ` x ) } ) ) |
| 44 | 37 43 | sseldd | |- ( ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ A. x e. T x e. ( N ` ( f ` x ) ) ) ) /\ x e. T ) -> x e. ( N ` U. ran f ) ) |
| 45 | 44 | ex | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ A. x e. T x e. ( N ` ( f ` x ) ) ) ) -> ( x e. T -> x e. ( N ` U. ran f ) ) ) |
| 46 | 21 45 | alrimi | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ A. x e. T x e. ( N ` ( f ` x ) ) ) ) -> A. x ( x e. T -> x e. ( N ` U. ran f ) ) ) |
| 47 | df-ss | |- ( T C_ ( N ` U. ran f ) <-> A. x ( x e. T -> x e. ( N ` U. ran f ) ) ) |
|
| 48 | 46 47 | sylibr | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ A. x e. T x e. ( N ` ( f ` x ) ) ) ) -> T C_ ( N ` U. ran f ) ) |
| 49 | 16 48 | jca | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ A. x e. T x e. ( N ` ( f ` x ) ) ) ) -> ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) |
| 50 | 49 | ex | |- ( ph -> ( ( f : T --> ( ~P S i^i Fin ) /\ A. x e. T x e. ( N ` ( f ` x ) ) ) -> ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) ) |
| 51 | 50 | eximdv | |- ( ph -> ( E. f ( f : T --> ( ~P S i^i Fin ) /\ A. x e. T x e. ( N ` ( f ` x ) ) ) -> E. f ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) ) |
| 52 | 15 51 | mpd | |- ( ph -> E. f ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) |