This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: ac6s with sethood as antecedent. (Contributed by FL, 3-Aug-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ac6sg.1 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | ac6sg | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac6sg.1 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | raleq | ⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑥 ∈ 𝑧 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ) | |
| 3 | feq2 | ⊢ ( 𝑧 = 𝐴 → ( 𝑓 : 𝑧 ⟶ 𝐵 ↔ 𝑓 : 𝐴 ⟶ 𝐵 ) ) | |
| 4 | raleq | ⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑥 ∈ 𝑧 𝜓 ↔ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) | |
| 5 | 3 4 | anbi12d | ⊢ ( 𝑧 = 𝐴 → ( ( 𝑓 : 𝑧 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑧 𝜓 ) ↔ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) |
| 6 | 5 | exbidv | ⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑓 ( 𝑓 : 𝑧 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑧 𝜓 ) ↔ ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) |
| 7 | 2 6 | imbi12d | ⊢ ( 𝑧 = 𝐴 → ( ( ∀ 𝑥 ∈ 𝑧 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑧 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑧 𝜓 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) ) |
| 8 | vex | ⊢ 𝑧 ∈ V | |
| 9 | 8 1 | ac6s | ⊢ ( ∀ 𝑥 ∈ 𝑧 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑧 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑧 𝜓 ) ) |
| 10 | 7 9 | vtoclg | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) |