This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Algebraicity of a conditional point closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acsfn | |- ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) -> { a e. ~P X | ( T C_ a -> K e. a ) } e. ( ACS ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt | |- Fun ( b e. ~P X |-> if ( b = T , { K } , (/) ) ) |
|
| 2 | funiunfv | |- ( Fun ( b e. ~P X |-> if ( b = T , { K } , (/) ) ) -> U_ c e. ( ~P a i^i Fin ) ( ( b e. ~P X |-> if ( b = T , { K } , (/) ) ) ` c ) = U. ( ( b e. ~P X |-> if ( b = T , { K } , (/) ) ) " ( ~P a i^i Fin ) ) ) |
|
| 3 | 1 2 | mp1i | |- ( ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) /\ a e. ~P X ) -> U_ c e. ( ~P a i^i Fin ) ( ( b e. ~P X |-> if ( b = T , { K } , (/) ) ) ` c ) = U. ( ( b e. ~P X |-> if ( b = T , { K } , (/) ) ) " ( ~P a i^i Fin ) ) ) |
| 4 | elinel1 | |- ( c e. ( ~P a i^i Fin ) -> c e. ~P a ) |
|
| 5 | 4 | elpwid | |- ( c e. ( ~P a i^i Fin ) -> c C_ a ) |
| 6 | elpwi | |- ( a e. ~P X -> a C_ X ) |
|
| 7 | 5 6 | sylan9ssr | |- ( ( a e. ~P X /\ c e. ( ~P a i^i Fin ) ) -> c C_ X ) |
| 8 | velpw | |- ( c e. ~P X <-> c C_ X ) |
|
| 9 | 7 8 | sylibr | |- ( ( a e. ~P X /\ c e. ( ~P a i^i Fin ) ) -> c e. ~P X ) |
| 10 | 9 | adantll | |- ( ( ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) /\ a e. ~P X ) /\ c e. ( ~P a i^i Fin ) ) -> c e. ~P X ) |
| 11 | eqeq1 | |- ( b = c -> ( b = T <-> c = T ) ) |
|
| 12 | 11 | ifbid | |- ( b = c -> if ( b = T , { K } , (/) ) = if ( c = T , { K } , (/) ) ) |
| 13 | eqid | |- ( b e. ~P X |-> if ( b = T , { K } , (/) ) ) = ( b e. ~P X |-> if ( b = T , { K } , (/) ) ) |
|
| 14 | snex | |- { K } e. _V |
|
| 15 | 0ex | |- (/) e. _V |
|
| 16 | 14 15 | ifex | |- if ( c = T , { K } , (/) ) e. _V |
| 17 | 12 13 16 | fvmpt | |- ( c e. ~P X -> ( ( b e. ~P X |-> if ( b = T , { K } , (/) ) ) ` c ) = if ( c = T , { K } , (/) ) ) |
| 18 | 10 17 | syl | |- ( ( ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) /\ a e. ~P X ) /\ c e. ( ~P a i^i Fin ) ) -> ( ( b e. ~P X |-> if ( b = T , { K } , (/) ) ) ` c ) = if ( c = T , { K } , (/) ) ) |
| 19 | 18 | iuneq2dv | |- ( ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) /\ a e. ~P X ) -> U_ c e. ( ~P a i^i Fin ) ( ( b e. ~P X |-> if ( b = T , { K } , (/) ) ) ` c ) = U_ c e. ( ~P a i^i Fin ) if ( c = T , { K } , (/) ) ) |
| 20 | 3 19 | eqtr3d | |- ( ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) /\ a e. ~P X ) -> U. ( ( b e. ~P X |-> if ( b = T , { K } , (/) ) ) " ( ~P a i^i Fin ) ) = U_ c e. ( ~P a i^i Fin ) if ( c = T , { K } , (/) ) ) |
| 21 | 20 | sseq1d | |- ( ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) /\ a e. ~P X ) -> ( U. ( ( b e. ~P X |-> if ( b = T , { K } , (/) ) ) " ( ~P a i^i Fin ) ) C_ a <-> U_ c e. ( ~P a i^i Fin ) if ( c = T , { K } , (/) ) C_ a ) ) |
| 22 | iunss | |- ( U_ c e. ( ~P a i^i Fin ) if ( c = T , { K } , (/) ) C_ a <-> A. c e. ( ~P a i^i Fin ) if ( c = T , { K } , (/) ) C_ a ) |
|
| 23 | sseq1 | |- ( { K } = if ( c = T , { K } , (/) ) -> ( { K } C_ a <-> if ( c = T , { K } , (/) ) C_ a ) ) |
|
| 24 | 23 | bibi1d | |- ( { K } = if ( c = T , { K } , (/) ) -> ( ( { K } C_ a <-> ( c = T -> K e. a ) ) <-> ( if ( c = T , { K } , (/) ) C_ a <-> ( c = T -> K e. a ) ) ) ) |
| 25 | sseq1 | |- ( (/) = if ( c = T , { K } , (/) ) -> ( (/) C_ a <-> if ( c = T , { K } , (/) ) C_ a ) ) |
|
| 26 | 25 | bibi1d | |- ( (/) = if ( c = T , { K } , (/) ) -> ( ( (/) C_ a <-> ( c = T -> K e. a ) ) <-> ( if ( c = T , { K } , (/) ) C_ a <-> ( c = T -> K e. a ) ) ) ) |
| 27 | snssg | |- ( K e. X -> ( K e. a <-> { K } C_ a ) ) |
|
| 28 | 27 | adantr | |- ( ( K e. X /\ c = T ) -> ( K e. a <-> { K } C_ a ) ) |
| 29 | biimt | |- ( c = T -> ( K e. a <-> ( c = T -> K e. a ) ) ) |
|
| 30 | 29 | adantl | |- ( ( K e. X /\ c = T ) -> ( K e. a <-> ( c = T -> K e. a ) ) ) |
| 31 | 28 30 | bitr3d | |- ( ( K e. X /\ c = T ) -> ( { K } C_ a <-> ( c = T -> K e. a ) ) ) |
| 32 | 0ss | |- (/) C_ a |
|
| 33 | 32 | a1i | |- ( -. c = T -> (/) C_ a ) |
| 34 | pm2.21 | |- ( -. c = T -> ( c = T -> K e. a ) ) |
|
| 35 | 33 34 | 2thd | |- ( -. c = T -> ( (/) C_ a <-> ( c = T -> K e. a ) ) ) |
| 36 | 35 | adantl | |- ( ( K e. X /\ -. c = T ) -> ( (/) C_ a <-> ( c = T -> K e. a ) ) ) |
| 37 | 24 26 31 36 | ifbothda | |- ( K e. X -> ( if ( c = T , { K } , (/) ) C_ a <-> ( c = T -> K e. a ) ) ) |
| 38 | 37 | ralbidv | |- ( K e. X -> ( A. c e. ( ~P a i^i Fin ) if ( c = T , { K } , (/) ) C_ a <-> A. c e. ( ~P a i^i Fin ) ( c = T -> K e. a ) ) ) |
| 39 | 38 | ad3antlr | |- ( ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) /\ a e. ~P X ) -> ( A. c e. ( ~P a i^i Fin ) if ( c = T , { K } , (/) ) C_ a <-> A. c e. ( ~P a i^i Fin ) ( c = T -> K e. a ) ) ) |
| 40 | 22 39 | bitrid | |- ( ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) /\ a e. ~P X ) -> ( U_ c e. ( ~P a i^i Fin ) if ( c = T , { K } , (/) ) C_ a <-> A. c e. ( ~P a i^i Fin ) ( c = T -> K e. a ) ) ) |
| 41 | inss1 | |- ( ~P a i^i Fin ) C_ ~P a |
|
| 42 | 6 | sspwd | |- ( a e. ~P X -> ~P a C_ ~P X ) |
| 43 | 41 42 | sstrid | |- ( a e. ~P X -> ( ~P a i^i Fin ) C_ ~P X ) |
| 44 | 43 | adantl | |- ( ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) /\ a e. ~P X ) -> ( ~P a i^i Fin ) C_ ~P X ) |
| 45 | ralss | |- ( ( ~P a i^i Fin ) C_ ~P X -> ( A. c e. ( ~P a i^i Fin ) ( c = T -> K e. a ) <-> A. c e. ~P X ( c e. ( ~P a i^i Fin ) -> ( c = T -> K e. a ) ) ) ) |
|
| 46 | 44 45 | syl | |- ( ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) /\ a e. ~P X ) -> ( A. c e. ( ~P a i^i Fin ) ( c = T -> K e. a ) <-> A. c e. ~P X ( c e. ( ~P a i^i Fin ) -> ( c = T -> K e. a ) ) ) ) |
| 47 | bi2.04 | |- ( ( c e. ( ~P a i^i Fin ) -> ( c = T -> K e. a ) ) <-> ( c = T -> ( c e. ( ~P a i^i Fin ) -> K e. a ) ) ) |
|
| 48 | 47 | ralbii | |- ( A. c e. ~P X ( c e. ( ~P a i^i Fin ) -> ( c = T -> K e. a ) ) <-> A. c e. ~P X ( c = T -> ( c e. ( ~P a i^i Fin ) -> K e. a ) ) ) |
| 49 | elpwg | |- ( T e. Fin -> ( T e. ~P X <-> T C_ X ) ) |
|
| 50 | 49 | biimparc | |- ( ( T C_ X /\ T e. Fin ) -> T e. ~P X ) |
| 51 | 50 | ad2antlr | |- ( ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) /\ a e. ~P X ) -> T e. ~P X ) |
| 52 | eleq1 | |- ( c = T -> ( c e. ( ~P a i^i Fin ) <-> T e. ( ~P a i^i Fin ) ) ) |
|
| 53 | 52 | imbi1d | |- ( c = T -> ( ( c e. ( ~P a i^i Fin ) -> K e. a ) <-> ( T e. ( ~P a i^i Fin ) -> K e. a ) ) ) |
| 54 | 53 | ceqsralv | |- ( T e. ~P X -> ( A. c e. ~P X ( c = T -> ( c e. ( ~P a i^i Fin ) -> K e. a ) ) <-> ( T e. ( ~P a i^i Fin ) -> K e. a ) ) ) |
| 55 | 51 54 | syl | |- ( ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) /\ a e. ~P X ) -> ( A. c e. ~P X ( c = T -> ( c e. ( ~P a i^i Fin ) -> K e. a ) ) <-> ( T e. ( ~P a i^i Fin ) -> K e. a ) ) ) |
| 56 | 48 55 | bitrid | |- ( ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) /\ a e. ~P X ) -> ( A. c e. ~P X ( c e. ( ~P a i^i Fin ) -> ( c = T -> K e. a ) ) <-> ( T e. ( ~P a i^i Fin ) -> K e. a ) ) ) |
| 57 | simplrr | |- ( ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) /\ a e. ~P X ) -> T e. Fin ) |
|
| 58 | 57 | biantrud | |- ( ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) /\ a e. ~P X ) -> ( T e. ~P a <-> ( T e. ~P a /\ T e. Fin ) ) ) |
| 59 | elin | |- ( T e. ( ~P a i^i Fin ) <-> ( T e. ~P a /\ T e. Fin ) ) |
|
| 60 | 58 59 | bitr4di | |- ( ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) /\ a e. ~P X ) -> ( T e. ~P a <-> T e. ( ~P a i^i Fin ) ) ) |
| 61 | vex | |- a e. _V |
|
| 62 | 61 | elpw2 | |- ( T e. ~P a <-> T C_ a ) |
| 63 | 60 62 | bitr3di | |- ( ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) /\ a e. ~P X ) -> ( T e. ( ~P a i^i Fin ) <-> T C_ a ) ) |
| 64 | 63 | imbi1d | |- ( ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) /\ a e. ~P X ) -> ( ( T e. ( ~P a i^i Fin ) -> K e. a ) <-> ( T C_ a -> K e. a ) ) ) |
| 65 | 46 56 64 | 3bitrd | |- ( ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) /\ a e. ~P X ) -> ( A. c e. ( ~P a i^i Fin ) ( c = T -> K e. a ) <-> ( T C_ a -> K e. a ) ) ) |
| 66 | 21 40 65 | 3bitrrd | |- ( ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) /\ a e. ~P X ) -> ( ( T C_ a -> K e. a ) <-> U. ( ( b e. ~P X |-> if ( b = T , { K } , (/) ) ) " ( ~P a i^i Fin ) ) C_ a ) ) |
| 67 | 66 | rabbidva | |- ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) -> { a e. ~P X | ( T C_ a -> K e. a ) } = { a e. ~P X | U. ( ( b e. ~P X |-> if ( b = T , { K } , (/) ) ) " ( ~P a i^i Fin ) ) C_ a } ) |
| 68 | simpll | |- ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) -> X e. V ) |
|
| 69 | snelpwi | |- ( K e. X -> { K } e. ~P X ) |
|
| 70 | 69 | ad2antlr | |- ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) -> { K } e. ~P X ) |
| 71 | 0elpw | |- (/) e. ~P X |
|
| 72 | ifcl | |- ( ( { K } e. ~P X /\ (/) e. ~P X ) -> if ( b = T , { K } , (/) ) e. ~P X ) |
|
| 73 | 70 71 72 | sylancl | |- ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) -> if ( b = T , { K } , (/) ) e. ~P X ) |
| 74 | 73 | adantr | |- ( ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) /\ b e. ~P X ) -> if ( b = T , { K } , (/) ) e. ~P X ) |
| 75 | 74 | fmpttd | |- ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) -> ( b e. ~P X |-> if ( b = T , { K } , (/) ) ) : ~P X --> ~P X ) |
| 76 | isacs1i | |- ( ( X e. V /\ ( b e. ~P X |-> if ( b = T , { K } , (/) ) ) : ~P X --> ~P X ) -> { a e. ~P X | U. ( ( b e. ~P X |-> if ( b = T , { K } , (/) ) ) " ( ~P a i^i Fin ) ) C_ a } e. ( ACS ` X ) ) |
|
| 77 | 68 75 76 | syl2anc | |- ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) -> { a e. ~P X | U. ( ( b e. ~P X |-> if ( b = T , { K } , (/) ) ) " ( ~P a i^i Fin ) ) C_ a } e. ( ACS ` X ) ) |
| 78 | 67 77 | eqeltrd | |- ( ( ( X e. V /\ K e. X ) /\ ( T C_ X /\ T e. Fin ) ) -> { a e. ~P X | ( T C_ a -> K e. a ) } e. ( ACS ` X ) ) |