This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an algebraic closure system, if S and T have the same closure and S is infinite independent, then T dominates S . This follows from applying acsinfd and then applying unirnfdomd to the map given in acsmap2d . See Section II.5 in Cohn p. 81 to 82. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | acsmap2d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( ACS ‘ 𝑋 ) ) | |
| acsmap2d.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | ||
| acsmap2d.3 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | ||
| acsmap2d.4 | ⊢ ( 𝜑 → 𝑆 ∈ 𝐼 ) | ||
| acsmap2d.5 | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑋 ) | ||
| acsmap2d.6 | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑆 ) = ( 𝑁 ‘ 𝑇 ) ) | ||
| acsinfd.7 | ⊢ ( 𝜑 → ¬ 𝑆 ∈ Fin ) | ||
| Assertion | acsdomd | ⊢ ( 𝜑 → 𝑆 ≼ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsmap2d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( ACS ‘ 𝑋 ) ) | |
| 2 | acsmap2d.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | |
| 3 | acsmap2d.3 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | |
| 4 | acsmap2d.4 | ⊢ ( 𝜑 → 𝑆 ∈ 𝐼 ) | |
| 5 | acsmap2d.5 | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑋 ) | |
| 6 | acsmap2d.6 | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑆 ) = ( 𝑁 ‘ 𝑇 ) ) | |
| 7 | acsinfd.7 | ⊢ ( 𝜑 → ¬ 𝑆 ∈ Fin ) | |
| 8 | 1 2 3 4 5 6 | acsmap2d | ⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) |
| 9 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) → 𝑆 = ∪ ran 𝑓 ) | |
| 10 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) → 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ) | |
| 11 | inss2 | ⊢ ( 𝒫 𝑆 ∩ Fin ) ⊆ Fin | |
| 12 | fss | ⊢ ( ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ( 𝒫 𝑆 ∩ Fin ) ⊆ Fin ) → 𝑓 : 𝑇 ⟶ Fin ) | |
| 13 | 10 11 12 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) → 𝑓 : 𝑇 ⟶ Fin ) |
| 14 | 1 2 3 4 5 6 7 | acsinfd | ⊢ ( 𝜑 → ¬ 𝑇 ∈ Fin ) |
| 15 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) → ¬ 𝑇 ∈ Fin ) |
| 16 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) → 𝐴 ∈ ( ACS ‘ 𝑋 ) ) |
| 17 | 16 | elfvexd | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) → 𝑋 ∈ V ) |
| 18 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) → 𝑇 ⊆ 𝑋 ) |
| 19 | 17 18 | ssexd | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) → 𝑇 ∈ V ) |
| 20 | 13 15 19 | unirnfdomd | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) → ∪ ran 𝑓 ≼ 𝑇 ) |
| 21 | 9 20 | eqbrtrd | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) → 𝑆 ≼ 𝑇 ) |
| 22 | 8 21 | exlimddv | ⊢ ( 𝜑 → 𝑆 ≼ 𝑇 ) |