This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an algebraic closure system, if S and T have the same closure and S is infinite independent, then T dominates S . This follows from applying acsinfd and then applying unirnfdomd to the map given in acsmap2d . See Section II.5 in Cohn p. 81 to 82. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | acsmap2d.1 | |- ( ph -> A e. ( ACS ` X ) ) |
|
| acsmap2d.2 | |- N = ( mrCls ` A ) |
||
| acsmap2d.3 | |- I = ( mrInd ` A ) |
||
| acsmap2d.4 | |- ( ph -> S e. I ) |
||
| acsmap2d.5 | |- ( ph -> T C_ X ) |
||
| acsmap2d.6 | |- ( ph -> ( N ` S ) = ( N ` T ) ) |
||
| acsinfd.7 | |- ( ph -> -. S e. Fin ) |
||
| Assertion | acsdomd | |- ( ph -> S ~<_ T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsmap2d.1 | |- ( ph -> A e. ( ACS ` X ) ) |
|
| 2 | acsmap2d.2 | |- N = ( mrCls ` A ) |
|
| 3 | acsmap2d.3 | |- I = ( mrInd ` A ) |
|
| 4 | acsmap2d.4 | |- ( ph -> S e. I ) |
|
| 5 | acsmap2d.5 | |- ( ph -> T C_ X ) |
|
| 6 | acsmap2d.6 | |- ( ph -> ( N ` S ) = ( N ` T ) ) |
|
| 7 | acsinfd.7 | |- ( ph -> -. S e. Fin ) |
|
| 8 | 1 2 3 4 5 6 | acsmap2d | |- ( ph -> E. f ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) |
| 9 | simprr | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> S = U. ran f ) |
|
| 10 | simprl | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> f : T --> ( ~P S i^i Fin ) ) |
|
| 11 | inss2 | |- ( ~P S i^i Fin ) C_ Fin |
|
| 12 | fss | |- ( ( f : T --> ( ~P S i^i Fin ) /\ ( ~P S i^i Fin ) C_ Fin ) -> f : T --> Fin ) |
|
| 13 | 10 11 12 | sylancl | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> f : T --> Fin ) |
| 14 | 1 2 3 4 5 6 7 | acsinfd | |- ( ph -> -. T e. Fin ) |
| 15 | 14 | adantr | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> -. T e. Fin ) |
| 16 | 1 | adantr | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> A e. ( ACS ` X ) ) |
| 17 | 16 | elfvexd | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> X e. _V ) |
| 18 | 5 | adantr | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> T C_ X ) |
| 19 | 17 18 | ssexd | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> T e. _V ) |
| 20 | 13 15 19 | unirnfdomd | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> U. ran f ~<_ T ) |
| 21 | 9 20 | eqbrtrd | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> S ~<_ T ) |
| 22 | 8 21 | exlimddv | |- ( ph -> S ~<_ T ) |