This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an algebraic closure system, if S and T have the same closure and S is infinite independent, then T is infinite. This follows from applying unirnffid to the map given in acsmap2d . See Section II.5 in Cohn p. 81 to 82. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | acsmap2d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( ACS ‘ 𝑋 ) ) | |
| acsmap2d.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | ||
| acsmap2d.3 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | ||
| acsmap2d.4 | ⊢ ( 𝜑 → 𝑆 ∈ 𝐼 ) | ||
| acsmap2d.5 | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑋 ) | ||
| acsmap2d.6 | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑆 ) = ( 𝑁 ‘ 𝑇 ) ) | ||
| acsinfd.7 | ⊢ ( 𝜑 → ¬ 𝑆 ∈ Fin ) | ||
| Assertion | acsinfd | ⊢ ( 𝜑 → ¬ 𝑇 ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsmap2d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( ACS ‘ 𝑋 ) ) | |
| 2 | acsmap2d.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | |
| 3 | acsmap2d.3 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | |
| 4 | acsmap2d.4 | ⊢ ( 𝜑 → 𝑆 ∈ 𝐼 ) | |
| 5 | acsmap2d.5 | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑋 ) | |
| 6 | acsmap2d.6 | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑆 ) = ( 𝑁 ‘ 𝑇 ) ) | |
| 7 | acsinfd.7 | ⊢ ( 𝜑 → ¬ 𝑆 ∈ Fin ) | |
| 8 | 1 2 3 4 5 6 | acsmap2d | ⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) |
| 9 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) ∧ 𝑇 ∈ Fin ) → 𝑆 = ∪ ran 𝑓 ) | |
| 10 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) ∧ 𝑇 ∈ Fin ) → 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ) | |
| 11 | inss2 | ⊢ ( 𝒫 𝑆 ∩ Fin ) ⊆ Fin | |
| 12 | fss | ⊢ ( ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ( 𝒫 𝑆 ∩ Fin ) ⊆ Fin ) → 𝑓 : 𝑇 ⟶ Fin ) | |
| 13 | 10 11 12 | sylancl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) ∧ 𝑇 ∈ Fin ) → 𝑓 : 𝑇 ⟶ Fin ) |
| 14 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) ∧ 𝑇 ∈ Fin ) → 𝑇 ∈ Fin ) | |
| 15 | 13 14 | unirnffid | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) ∧ 𝑇 ∈ Fin ) → ∪ ran 𝑓 ∈ Fin ) |
| 16 | 9 15 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) ∧ 𝑇 ∈ Fin ) → 𝑆 ∈ Fin ) |
| 17 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) ∧ 𝑇 ∈ Fin ) → ¬ 𝑆 ∈ Fin ) |
| 18 | 16 17 | pm2.65da | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) → ¬ 𝑇 ∈ Fin ) |
| 19 | 8 18 | exlimddv | ⊢ ( 𝜑 → ¬ 𝑇 ∈ Fin ) |