This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an algebraic closure system, if S and T have the same closure and S is infinite independent, then T dominates S . This follows from applying acsinfd and then applying unirnfdomd to the map given in acsmap2d . See Section II.5 in Cohn p. 81 to 82. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | acsmap2d.1 | ||
| acsmap2d.2 | |||
| acsmap2d.3 | |||
| acsmap2d.4 | |||
| acsmap2d.5 | |||
| acsmap2d.6 | |||
| acsinfd.7 | |||
| Assertion | acsdomd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsmap2d.1 | ||
| 2 | acsmap2d.2 | ||
| 3 | acsmap2d.3 | ||
| 4 | acsmap2d.4 | ||
| 5 | acsmap2d.5 | ||
| 6 | acsmap2d.6 | ||
| 7 | acsinfd.7 | ||
| 8 | 1 2 3 4 5 6 | acsmap2d | |
| 9 | simprr | ||
| 10 | simprl | ||
| 11 | inss2 | ||
| 12 | fss | ||
| 13 | 10 11 12 | sylancl | |
| 14 | 1 2 3 4 5 6 7 | acsinfd | |
| 15 | 14 | adantr | |
| 16 | 1 | adantr | |
| 17 | 16 | elfvexd | |
| 18 | 5 | adantr | |
| 19 | 17 18 | ssexd | |
| 20 | 13 15 19 | unirnfdomd | |
| 21 | 9 20 | eqbrtrd | |
| 22 | 8 21 | exlimddv |