This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an algebraic closure system, if two independent sets have equal closure and one is infinite, then they are equinumerous. This is proven by using acsdomd twice with acsinfd . See Section II.5 in Cohn p. 81 to 82. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | acsinfdimd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( ACS ‘ 𝑋 ) ) | |
| acsinfdimd.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | ||
| acsinfdimd.3 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | ||
| acsinfdimd.4 | ⊢ ( 𝜑 → 𝑆 ∈ 𝐼 ) | ||
| acsinfdimd.5 | ⊢ ( 𝜑 → 𝑇 ∈ 𝐼 ) | ||
| acsinfdimd.6 | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑆 ) = ( 𝑁 ‘ 𝑇 ) ) | ||
| acsinfdimd.7 | ⊢ ( 𝜑 → ¬ 𝑆 ∈ Fin ) | ||
| Assertion | acsinfdimd | ⊢ ( 𝜑 → 𝑆 ≈ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsinfdimd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( ACS ‘ 𝑋 ) ) | |
| 2 | acsinfdimd.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | |
| 3 | acsinfdimd.3 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | |
| 4 | acsinfdimd.4 | ⊢ ( 𝜑 → 𝑆 ∈ 𝐼 ) | |
| 5 | acsinfdimd.5 | ⊢ ( 𝜑 → 𝑇 ∈ 𝐼 ) | |
| 6 | acsinfdimd.6 | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑆 ) = ( 𝑁 ‘ 𝑇 ) ) | |
| 7 | acsinfdimd.7 | ⊢ ( 𝜑 → ¬ 𝑆 ∈ Fin ) | |
| 8 | 1 | acsmred | ⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 9 | 3 8 5 | mrissd | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑋 ) |
| 10 | 1 2 3 4 9 6 7 | acsdomd | ⊢ ( 𝜑 → 𝑆 ≼ 𝑇 ) |
| 11 | 3 8 4 | mrissd | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
| 12 | 6 | eqcomd | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑇 ) = ( 𝑁 ‘ 𝑆 ) ) |
| 13 | 1 2 3 4 9 6 7 | acsinfd | ⊢ ( 𝜑 → ¬ 𝑇 ∈ Fin ) |
| 14 | 1 2 3 5 11 12 13 | acsdomd | ⊢ ( 𝜑 → 𝑇 ≼ 𝑆 ) |
| 15 | sbth | ⊢ ( ( 𝑆 ≼ 𝑇 ∧ 𝑇 ≼ 𝑆 ) → 𝑆 ≈ 𝑇 ) | |
| 16 | 10 14 15 | syl2anc | ⊢ ( 𝜑 → 𝑆 ≈ 𝑇 ) |