This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arccosine function is an inverse to cos . (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acoscos | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → ( arccos ‘ ( cos ‘ 𝐴 ) ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coscl | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → ( cos ‘ 𝐴 ) ∈ ℂ ) |
| 3 | acosval | ⊢ ( ( cos ‘ 𝐴 ) ∈ ℂ → ( arccos ‘ ( cos ‘ 𝐴 ) ) = ( ( π / 2 ) − ( arcsin ‘ ( cos ‘ 𝐴 ) ) ) ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → ( arccos ‘ ( cos ‘ 𝐴 ) ) = ( ( π / 2 ) − ( arcsin ‘ ( cos ‘ 𝐴 ) ) ) ) |
| 5 | picn | ⊢ π ∈ ℂ | |
| 6 | halfcl | ⊢ ( π ∈ ℂ → ( π / 2 ) ∈ ℂ ) | |
| 7 | 5 6 | ax-mp | ⊢ ( π / 2 ) ∈ ℂ |
| 8 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → 𝐴 ∈ ℂ ) | |
| 9 | nncan | ⊢ ( ( ( π / 2 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( π / 2 ) − ( ( π / 2 ) − 𝐴 ) ) = 𝐴 ) | |
| 10 | 7 8 9 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → ( ( π / 2 ) − ( ( π / 2 ) − 𝐴 ) ) = 𝐴 ) |
| 11 | 10 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → ( cos ‘ ( ( π / 2 ) − ( ( π / 2 ) − 𝐴 ) ) ) = ( cos ‘ 𝐴 ) ) |
| 12 | subcl | ⊢ ( ( ( π / 2 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( π / 2 ) − 𝐴 ) ∈ ℂ ) | |
| 13 | 7 8 12 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → ( ( π / 2 ) − 𝐴 ) ∈ ℂ ) |
| 14 | coshalfpim | ⊢ ( ( ( π / 2 ) − 𝐴 ) ∈ ℂ → ( cos ‘ ( ( π / 2 ) − ( ( π / 2 ) − 𝐴 ) ) ) = ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → ( cos ‘ ( ( π / 2 ) − ( ( π / 2 ) − 𝐴 ) ) ) = ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) ) |
| 16 | 11 15 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → ( cos ‘ 𝐴 ) = ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) ) |
| 17 | 16 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → ( arcsin ‘ ( cos ‘ 𝐴 ) ) = ( arcsin ‘ ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) ) ) |
| 18 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 19 | 18 | recni | ⊢ ( π / 2 ) ∈ ℂ |
| 20 | resub | ⊢ ( ( ( π / 2 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ℜ ‘ ( ( π / 2 ) − 𝐴 ) ) = ( ( ℜ ‘ ( π / 2 ) ) − ( ℜ ‘ 𝐴 ) ) ) | |
| 21 | 19 8 20 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → ( ℜ ‘ ( ( π / 2 ) − 𝐴 ) ) = ( ( ℜ ‘ ( π / 2 ) ) − ( ℜ ‘ 𝐴 ) ) ) |
| 22 | rere | ⊢ ( ( π / 2 ) ∈ ℝ → ( ℜ ‘ ( π / 2 ) ) = ( π / 2 ) ) | |
| 23 | 18 22 | ax-mp | ⊢ ( ℜ ‘ ( π / 2 ) ) = ( π / 2 ) |
| 24 | 23 | oveq1i | ⊢ ( ( ℜ ‘ ( π / 2 ) ) − ( ℜ ‘ 𝐴 ) ) = ( ( π / 2 ) − ( ℜ ‘ 𝐴 ) ) |
| 25 | 21 24 | eqtrdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → ( ℜ ‘ ( ( π / 2 ) − 𝐴 ) ) = ( ( π / 2 ) − ( ℜ ‘ 𝐴 ) ) ) |
| 26 | recl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) | |
| 27 | 26 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 28 | resubcl | ⊢ ( ( ( π / 2 ) ∈ ℝ ∧ ( ℜ ‘ 𝐴 ) ∈ ℝ ) → ( ( π / 2 ) − ( ℜ ‘ 𝐴 ) ) ∈ ℝ ) | |
| 29 | 18 27 28 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → ( ( π / 2 ) − ( ℜ ‘ 𝐴 ) ) ∈ ℝ ) |
| 30 | 18 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → ( π / 2 ) ∈ ℝ ) |
| 31 | neghalfpire | ⊢ - ( π / 2 ) ∈ ℝ | |
| 32 | 31 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → - ( π / 2 ) ∈ ℝ ) |
| 33 | eliooord | ⊢ ( ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) → ( 0 < ( ℜ ‘ 𝐴 ) ∧ ( ℜ ‘ 𝐴 ) < π ) ) | |
| 34 | 33 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → ( 0 < ( ℜ ‘ 𝐴 ) ∧ ( ℜ ‘ 𝐴 ) < π ) ) |
| 35 | 34 | simprd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → ( ℜ ‘ 𝐴 ) < π ) |
| 36 | 19 19 | subnegi | ⊢ ( ( π / 2 ) − - ( π / 2 ) ) = ( ( π / 2 ) + ( π / 2 ) ) |
| 37 | pidiv2halves | ⊢ ( ( π / 2 ) + ( π / 2 ) ) = π | |
| 38 | 36 37 | eqtri | ⊢ ( ( π / 2 ) − - ( π / 2 ) ) = π |
| 39 | 35 38 | breqtrrdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → ( ℜ ‘ 𝐴 ) < ( ( π / 2 ) − - ( π / 2 ) ) ) |
| 40 | 27 30 32 39 | ltsub13d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → - ( π / 2 ) < ( ( π / 2 ) − ( ℜ ‘ 𝐴 ) ) ) |
| 41 | 34 | simpld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → 0 < ( ℜ ‘ 𝐴 ) ) |
| 42 | ltsubpos | ⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ) → ( 0 < ( ℜ ‘ 𝐴 ) ↔ ( ( π / 2 ) − ( ℜ ‘ 𝐴 ) ) < ( π / 2 ) ) ) | |
| 43 | 27 18 42 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → ( 0 < ( ℜ ‘ 𝐴 ) ↔ ( ( π / 2 ) − ( ℜ ‘ 𝐴 ) ) < ( π / 2 ) ) ) |
| 44 | 41 43 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → ( ( π / 2 ) − ( ℜ ‘ 𝐴 ) ) < ( π / 2 ) ) |
| 45 | 31 | rexri | ⊢ - ( π / 2 ) ∈ ℝ* |
| 46 | 18 | rexri | ⊢ ( π / 2 ) ∈ ℝ* |
| 47 | elioo2 | ⊢ ( ( - ( π / 2 ) ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ) → ( ( ( π / 2 ) − ( ℜ ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ ( ( ( π / 2 ) − ( ℜ ‘ 𝐴 ) ) ∈ ℝ ∧ - ( π / 2 ) < ( ( π / 2 ) − ( ℜ ‘ 𝐴 ) ) ∧ ( ( π / 2 ) − ( ℜ ‘ 𝐴 ) ) < ( π / 2 ) ) ) ) | |
| 48 | 45 46 47 | mp2an | ⊢ ( ( ( π / 2 ) − ( ℜ ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ ( ( ( π / 2 ) − ( ℜ ‘ 𝐴 ) ) ∈ ℝ ∧ - ( π / 2 ) < ( ( π / 2 ) − ( ℜ ‘ 𝐴 ) ) ∧ ( ( π / 2 ) − ( ℜ ‘ 𝐴 ) ) < ( π / 2 ) ) ) |
| 49 | 29 40 44 48 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → ( ( π / 2 ) − ( ℜ ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| 50 | 25 49 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → ( ℜ ‘ ( ( π / 2 ) − 𝐴 ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| 51 | asinsin | ⊢ ( ( ( ( π / 2 ) − 𝐴 ) ∈ ℂ ∧ ( ℜ ‘ ( ( π / 2 ) − 𝐴 ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( arcsin ‘ ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) ) = ( ( π / 2 ) − 𝐴 ) ) | |
| 52 | 13 50 51 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → ( arcsin ‘ ( sin ‘ ( ( π / 2 ) − 𝐴 ) ) ) = ( ( π / 2 ) − 𝐴 ) ) |
| 53 | 17 52 | eqtr2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → ( ( π / 2 ) − 𝐴 ) = ( arcsin ‘ ( cos ‘ 𝐴 ) ) ) |
| 54 | asincl | ⊢ ( ( cos ‘ 𝐴 ) ∈ ℂ → ( arcsin ‘ ( cos ‘ 𝐴 ) ) ∈ ℂ ) | |
| 55 | 2 54 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → ( arcsin ‘ ( cos ‘ 𝐴 ) ) ∈ ℂ ) |
| 56 | subsub23 | ⊢ ( ( ( π / 2 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ( arcsin ‘ ( cos ‘ 𝐴 ) ) ∈ ℂ ) → ( ( ( π / 2 ) − 𝐴 ) = ( arcsin ‘ ( cos ‘ 𝐴 ) ) ↔ ( ( π / 2 ) − ( arcsin ‘ ( cos ‘ 𝐴 ) ) ) = 𝐴 ) ) | |
| 57 | 19 8 55 56 | mp3an2i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → ( ( ( π / 2 ) − 𝐴 ) = ( arcsin ‘ ( cos ‘ 𝐴 ) ) ↔ ( ( π / 2 ) − ( arcsin ‘ ( cos ‘ 𝐴 ) ) ) = 𝐴 ) ) |
| 58 | 53 57 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → ( ( π / 2 ) − ( arcsin ‘ ( cos ‘ 𝐴 ) ) ) = 𝐴 ) |
| 59 | 4 58 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) π ) ) → ( arccos ‘ ( cos ‘ 𝐴 ) ) = 𝐴 ) |