This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arccosine function is an inverse to cos . (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acoscos | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> ( arccos ` ( cos ` A ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coscl | |- ( A e. CC -> ( cos ` A ) e. CC ) |
|
| 2 | 1 | adantr | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> ( cos ` A ) e. CC ) |
| 3 | acosval | |- ( ( cos ` A ) e. CC -> ( arccos ` ( cos ` A ) ) = ( ( _pi / 2 ) - ( arcsin ` ( cos ` A ) ) ) ) |
|
| 4 | 2 3 | syl | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> ( arccos ` ( cos ` A ) ) = ( ( _pi / 2 ) - ( arcsin ` ( cos ` A ) ) ) ) |
| 5 | picn | |- _pi e. CC |
|
| 6 | halfcl | |- ( _pi e. CC -> ( _pi / 2 ) e. CC ) |
|
| 7 | 5 6 | ax-mp | |- ( _pi / 2 ) e. CC |
| 8 | simpl | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> A e. CC ) |
|
| 9 | nncan | |- ( ( ( _pi / 2 ) e. CC /\ A e. CC ) -> ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) = A ) |
|
| 10 | 7 8 9 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) = A ) |
| 11 | 10 | fveq2d | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> ( cos ` ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) ) = ( cos ` A ) ) |
| 12 | subcl | |- ( ( ( _pi / 2 ) e. CC /\ A e. CC ) -> ( ( _pi / 2 ) - A ) e. CC ) |
|
| 13 | 7 8 12 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> ( ( _pi / 2 ) - A ) e. CC ) |
| 14 | coshalfpim | |- ( ( ( _pi / 2 ) - A ) e. CC -> ( cos ` ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) ) = ( sin ` ( ( _pi / 2 ) - A ) ) ) |
|
| 15 | 13 14 | syl | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> ( cos ` ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) ) = ( sin ` ( ( _pi / 2 ) - A ) ) ) |
| 16 | 11 15 | eqtr3d | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> ( cos ` A ) = ( sin ` ( ( _pi / 2 ) - A ) ) ) |
| 17 | 16 | fveq2d | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> ( arcsin ` ( cos ` A ) ) = ( arcsin ` ( sin ` ( ( _pi / 2 ) - A ) ) ) ) |
| 18 | halfpire | |- ( _pi / 2 ) e. RR |
|
| 19 | 18 | recni | |- ( _pi / 2 ) e. CC |
| 20 | resub | |- ( ( ( _pi / 2 ) e. CC /\ A e. CC ) -> ( Re ` ( ( _pi / 2 ) - A ) ) = ( ( Re ` ( _pi / 2 ) ) - ( Re ` A ) ) ) |
|
| 21 | 19 8 20 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> ( Re ` ( ( _pi / 2 ) - A ) ) = ( ( Re ` ( _pi / 2 ) ) - ( Re ` A ) ) ) |
| 22 | rere | |- ( ( _pi / 2 ) e. RR -> ( Re ` ( _pi / 2 ) ) = ( _pi / 2 ) ) |
|
| 23 | 18 22 | ax-mp | |- ( Re ` ( _pi / 2 ) ) = ( _pi / 2 ) |
| 24 | 23 | oveq1i | |- ( ( Re ` ( _pi / 2 ) ) - ( Re ` A ) ) = ( ( _pi / 2 ) - ( Re ` A ) ) |
| 25 | 21 24 | eqtrdi | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> ( Re ` ( ( _pi / 2 ) - A ) ) = ( ( _pi / 2 ) - ( Re ` A ) ) ) |
| 26 | recl | |- ( A e. CC -> ( Re ` A ) e. RR ) |
|
| 27 | 26 | adantr | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> ( Re ` A ) e. RR ) |
| 28 | resubcl | |- ( ( ( _pi / 2 ) e. RR /\ ( Re ` A ) e. RR ) -> ( ( _pi / 2 ) - ( Re ` A ) ) e. RR ) |
|
| 29 | 18 27 28 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> ( ( _pi / 2 ) - ( Re ` A ) ) e. RR ) |
| 30 | 18 | a1i | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> ( _pi / 2 ) e. RR ) |
| 31 | neghalfpire | |- -u ( _pi / 2 ) e. RR |
|
| 32 | 31 | a1i | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> -u ( _pi / 2 ) e. RR ) |
| 33 | eliooord | |- ( ( Re ` A ) e. ( 0 (,) _pi ) -> ( 0 < ( Re ` A ) /\ ( Re ` A ) < _pi ) ) |
|
| 34 | 33 | adantl | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> ( 0 < ( Re ` A ) /\ ( Re ` A ) < _pi ) ) |
| 35 | 34 | simprd | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> ( Re ` A ) < _pi ) |
| 36 | 19 19 | subnegi | |- ( ( _pi / 2 ) - -u ( _pi / 2 ) ) = ( ( _pi / 2 ) + ( _pi / 2 ) ) |
| 37 | pidiv2halves | |- ( ( _pi / 2 ) + ( _pi / 2 ) ) = _pi |
|
| 38 | 36 37 | eqtri | |- ( ( _pi / 2 ) - -u ( _pi / 2 ) ) = _pi |
| 39 | 35 38 | breqtrrdi | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> ( Re ` A ) < ( ( _pi / 2 ) - -u ( _pi / 2 ) ) ) |
| 40 | 27 30 32 39 | ltsub13d | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> -u ( _pi / 2 ) < ( ( _pi / 2 ) - ( Re ` A ) ) ) |
| 41 | 34 | simpld | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> 0 < ( Re ` A ) ) |
| 42 | ltsubpos | |- ( ( ( Re ` A ) e. RR /\ ( _pi / 2 ) e. RR ) -> ( 0 < ( Re ` A ) <-> ( ( _pi / 2 ) - ( Re ` A ) ) < ( _pi / 2 ) ) ) |
|
| 43 | 27 18 42 | sylancl | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> ( 0 < ( Re ` A ) <-> ( ( _pi / 2 ) - ( Re ` A ) ) < ( _pi / 2 ) ) ) |
| 44 | 41 43 | mpbid | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> ( ( _pi / 2 ) - ( Re ` A ) ) < ( _pi / 2 ) ) |
| 45 | 31 | rexri | |- -u ( _pi / 2 ) e. RR* |
| 46 | 18 | rexri | |- ( _pi / 2 ) e. RR* |
| 47 | elioo2 | |- ( ( -u ( _pi / 2 ) e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( ( ( _pi / 2 ) - ( Re ` A ) ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> ( ( ( _pi / 2 ) - ( Re ` A ) ) e. RR /\ -u ( _pi / 2 ) < ( ( _pi / 2 ) - ( Re ` A ) ) /\ ( ( _pi / 2 ) - ( Re ` A ) ) < ( _pi / 2 ) ) ) ) |
|
| 48 | 45 46 47 | mp2an | |- ( ( ( _pi / 2 ) - ( Re ` A ) ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> ( ( ( _pi / 2 ) - ( Re ` A ) ) e. RR /\ -u ( _pi / 2 ) < ( ( _pi / 2 ) - ( Re ` A ) ) /\ ( ( _pi / 2 ) - ( Re ` A ) ) < ( _pi / 2 ) ) ) |
| 49 | 29 40 44 48 | syl3anbrc | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> ( ( _pi / 2 ) - ( Re ` A ) ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| 50 | 25 49 | eqeltrd | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> ( Re ` ( ( _pi / 2 ) - A ) ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| 51 | asinsin | |- ( ( ( ( _pi / 2 ) - A ) e. CC /\ ( Re ` ( ( _pi / 2 ) - A ) ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( arcsin ` ( sin ` ( ( _pi / 2 ) - A ) ) ) = ( ( _pi / 2 ) - A ) ) |
|
| 52 | 13 50 51 | syl2anc | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> ( arcsin ` ( sin ` ( ( _pi / 2 ) - A ) ) ) = ( ( _pi / 2 ) - A ) ) |
| 53 | 17 52 | eqtr2d | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> ( ( _pi / 2 ) - A ) = ( arcsin ` ( cos ` A ) ) ) |
| 54 | asincl | |- ( ( cos ` A ) e. CC -> ( arcsin ` ( cos ` A ) ) e. CC ) |
|
| 55 | 2 54 | syl | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> ( arcsin ` ( cos ` A ) ) e. CC ) |
| 56 | subsub23 | |- ( ( ( _pi / 2 ) e. CC /\ A e. CC /\ ( arcsin ` ( cos ` A ) ) e. CC ) -> ( ( ( _pi / 2 ) - A ) = ( arcsin ` ( cos ` A ) ) <-> ( ( _pi / 2 ) - ( arcsin ` ( cos ` A ) ) ) = A ) ) |
|
| 57 | 19 8 55 56 | mp3an2i | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> ( ( ( _pi / 2 ) - A ) = ( arcsin ` ( cos ` A ) ) <-> ( ( _pi / 2 ) - ( arcsin ` ( cos ` A ) ) ) = A ) ) |
| 58 | 53 57 | mpbid | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> ( ( _pi / 2 ) - ( arcsin ` ( cos ` A ) ) ) = A ) |
| 59 | 4 58 | eqtrd | |- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) _pi ) ) -> ( arccos ` ( cos ` A ) ) = A ) |