This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of two versions of the Axiom of Choice ax-ac . The proof uses neither AC nor the Axiom of Regularity. The right-hand side expresses our AC with the fewest number of different variables. (Contributed by NM, 5-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | aceq1 | ⊢ ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑧 ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biidd | ⊢ ( 𝑤 = 𝑡 → ( ∃! 𝑣 ∈ ℎ ∃ 𝑢 ∈ 𝑦 ( ℎ ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ∃! 𝑣 ∈ ℎ ∃ 𝑢 ∈ 𝑦 ( ℎ ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ) ) | |
| 2 | 1 | cbvralvw | ⊢ ( ∀ 𝑤 ∈ ℎ ∃! 𝑣 ∈ ℎ ∃ 𝑢 ∈ 𝑦 ( ℎ ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ∀ 𝑡 ∈ ℎ ∃! 𝑣 ∈ ℎ ∃ 𝑢 ∈ 𝑦 ( ℎ ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ) |
| 3 | elequ1 | ⊢ ( 𝑣 = 𝑧 → ( 𝑣 ∈ 𝑢 ↔ 𝑧 ∈ 𝑢 ) ) | |
| 4 | 3 | anbi2d | ⊢ ( 𝑣 = 𝑧 → ( ( ℎ ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ( ℎ ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) ) |
| 5 | 4 | rexbidv | ⊢ ( 𝑣 = 𝑧 → ( ∃ 𝑢 ∈ 𝑦 ( ℎ ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ∃ 𝑢 ∈ 𝑦 ( ℎ ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) ) |
| 6 | 5 | cbvreuvw | ⊢ ( ∃! 𝑣 ∈ ℎ ∃ 𝑢 ∈ 𝑦 ( ℎ ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ∃! 𝑧 ∈ ℎ ∃ 𝑢 ∈ 𝑦 ( ℎ ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) |
| 7 | 6 | ralbii | ⊢ ( ∀ 𝑡 ∈ ℎ ∃! 𝑣 ∈ ℎ ∃ 𝑢 ∈ 𝑦 ( ℎ ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ∀ 𝑡 ∈ ℎ ∃! 𝑧 ∈ ℎ ∃ 𝑢 ∈ 𝑦 ( ℎ ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) |
| 8 | 2 7 | bitri | ⊢ ( ∀ 𝑤 ∈ ℎ ∃! 𝑣 ∈ ℎ ∃ 𝑢 ∈ 𝑦 ( ℎ ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ∀ 𝑡 ∈ ℎ ∃! 𝑧 ∈ ℎ ∃ 𝑢 ∈ 𝑦 ( ℎ ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) |
| 9 | 8 | ralbii | ⊢ ( ∀ ℎ ∈ 𝑥 ∀ 𝑤 ∈ ℎ ∃! 𝑣 ∈ ℎ ∃ 𝑢 ∈ 𝑦 ( ℎ ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ∀ ℎ ∈ 𝑥 ∀ 𝑡 ∈ ℎ ∃! 𝑧 ∈ ℎ ∃ 𝑢 ∈ 𝑦 ( ℎ ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) |
| 10 | elequ1 | ⊢ ( 𝑧 = ℎ → ( 𝑧 ∈ 𝑢 ↔ ℎ ∈ 𝑢 ) ) | |
| 11 | 10 | anbi1d | ⊢ ( 𝑧 = ℎ → ( ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ( ℎ ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ) ) |
| 12 | 11 | rexbidv | ⊢ ( 𝑧 = ℎ → ( ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ∃ 𝑢 ∈ 𝑦 ( ℎ ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ) ) |
| 13 | 12 | reueqd | ⊢ ( 𝑧 = ℎ → ( ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ∃! 𝑣 ∈ ℎ ∃ 𝑢 ∈ 𝑦 ( ℎ ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ) ) |
| 14 | 13 | raleqbi1dv | ⊢ ( 𝑧 = ℎ → ( ∀ 𝑤 ∈ 𝑧 ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ∀ 𝑤 ∈ ℎ ∃! 𝑣 ∈ ℎ ∃ 𝑢 ∈ 𝑦 ( ℎ ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ) ) |
| 15 | 14 | cbvralvw | ⊢ ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑧 ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ∀ ℎ ∈ 𝑥 ∀ 𝑤 ∈ ℎ ∃! 𝑣 ∈ ℎ ∃ 𝑢 ∈ 𝑦 ( ℎ ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ) |
| 16 | elequ1 | ⊢ ( 𝑤 = ℎ → ( 𝑤 ∈ 𝑢 ↔ ℎ ∈ 𝑢 ) ) | |
| 17 | 16 | anbi1d | ⊢ ( 𝑤 = ℎ → ( ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ↔ ( ℎ ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) ) |
| 18 | 17 | rexbidv | ⊢ ( 𝑤 = ℎ → ( ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ↔ ∃ 𝑢 ∈ 𝑦 ( ℎ ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) ) |
| 19 | 18 | reueqd | ⊢ ( 𝑤 = ℎ → ( ∃! 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ↔ ∃! 𝑧 ∈ ℎ ∃ 𝑢 ∈ 𝑦 ( ℎ ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) ) |
| 20 | 19 | raleqbi1dv | ⊢ ( 𝑤 = ℎ → ( ∀ 𝑡 ∈ 𝑤 ∃! 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ↔ ∀ 𝑡 ∈ ℎ ∃! 𝑧 ∈ ℎ ∃ 𝑢 ∈ 𝑦 ( ℎ ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) ) |
| 21 | 20 | cbvralvw | ⊢ ( ∀ 𝑤 ∈ 𝑥 ∀ 𝑡 ∈ 𝑤 ∃! 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ↔ ∀ ℎ ∈ 𝑥 ∀ 𝑡 ∈ ℎ ∃! 𝑧 ∈ ℎ ∃ 𝑢 ∈ 𝑦 ( ℎ ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) |
| 22 | 9 15 21 | 3bitr4i | ⊢ ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑧 ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ∀ 𝑤 ∈ 𝑥 ∀ 𝑡 ∈ 𝑤 ∃! 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) |
| 23 | 22 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑧 ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ∃ 𝑦 ∀ 𝑤 ∈ 𝑥 ∀ 𝑡 ∈ 𝑤 ∃! 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) |
| 24 | 19.21v | ⊢ ( ∀ 𝑧 ( 𝑤 ∈ 𝑥 → ( 𝑧 ∈ 𝑤 → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) ↔ ( 𝑤 ∈ 𝑥 → ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) ) | |
| 25 | impexp | ⊢ ( ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑤 → ( 𝑤 ∈ 𝑥 → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) ) | |
| 26 | bi2.04 | ⊢ ( ( 𝑧 ∈ 𝑤 → ( 𝑤 ∈ 𝑥 → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) ↔ ( 𝑤 ∈ 𝑥 → ( 𝑧 ∈ 𝑤 → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) ) | |
| 27 | 25 26 | bitri | ⊢ ( ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ↔ ( 𝑤 ∈ 𝑥 → ( 𝑧 ∈ 𝑤 → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) ) |
| 28 | 27 | albii | ⊢ ( ∀ 𝑧 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ↔ ∀ 𝑧 ( 𝑤 ∈ 𝑥 → ( 𝑧 ∈ 𝑤 → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) ) |
| 29 | eu6 | ⊢ ( ∃! 𝑧 ( 𝑧 ∈ 𝑤 ∧ ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) ↔ ∃ 𝑥 ∀ 𝑧 ( ( 𝑧 ∈ 𝑤 ∧ ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) ↔ 𝑧 = 𝑥 ) ) | |
| 30 | df-reu | ⊢ ( ∃! 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ↔ ∃! 𝑧 ( 𝑧 ∈ 𝑤 ∧ ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) ) | |
| 31 | 19.42v | ⊢ ( ∃ 𝑥 ( 𝑧 ∈ 𝑤 ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥 ) ) ) ↔ ( 𝑧 ∈ 𝑤 ∧ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥 ) ) ) ) | |
| 32 | an42 | ⊢ ( ( ( 𝑧 ∈ 𝑤 ∧ 𝑥 ∈ 𝑦 ) ∧ ( 𝑤 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥 ) ) ↔ ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ) | |
| 33 | anass | ⊢ ( ( ( 𝑧 ∈ 𝑤 ∧ 𝑥 ∈ 𝑦 ) ∧ ( 𝑤 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑤 ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥 ) ) ) ) | |
| 34 | 32 33 | bitr3i | ⊢ ( ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ ( 𝑧 ∈ 𝑤 ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
| 35 | 34 | exbii | ⊢ ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ ∃ 𝑥 ( 𝑧 ∈ 𝑤 ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
| 36 | df-rex | ⊢ ( ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ↔ ∃ 𝑢 ( 𝑢 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) ) | |
| 37 | elequ1 | ⊢ ( 𝑢 = 𝑥 → ( 𝑢 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦 ) ) | |
| 38 | elequ2 | ⊢ ( 𝑢 = 𝑥 → ( 𝑤 ∈ 𝑢 ↔ 𝑤 ∈ 𝑥 ) ) | |
| 39 | elequ2 | ⊢ ( 𝑢 = 𝑥 → ( 𝑧 ∈ 𝑢 ↔ 𝑧 ∈ 𝑥 ) ) | |
| 40 | 38 39 | anbi12d | ⊢ ( 𝑢 = 𝑥 → ( ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ↔ ( 𝑤 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥 ) ) ) |
| 41 | 37 40 | anbi12d | ⊢ ( 𝑢 = 𝑥 → ( ( 𝑢 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
| 42 | 41 | cbvexvw | ⊢ ( ∃ 𝑢 ( 𝑢 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥 ) ) ) |
| 43 | 36 42 | bitri | ⊢ ( ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥 ) ) ) |
| 44 | 43 | anbi2i | ⊢ ( ( 𝑧 ∈ 𝑤 ∧ ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) ↔ ( 𝑧 ∈ 𝑤 ∧ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
| 45 | 31 35 44 | 3bitr4i | ⊢ ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ ( 𝑧 ∈ 𝑤 ∧ ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) ) |
| 46 | 45 | bibi1i | ⊢ ( ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ↔ ( ( 𝑧 ∈ 𝑤 ∧ ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) ↔ 𝑧 = 𝑥 ) ) |
| 47 | 46 | albii | ⊢ ( ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ↔ ∀ 𝑧 ( ( 𝑧 ∈ 𝑤 ∧ ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) ↔ 𝑧 = 𝑥 ) ) |
| 48 | 47 | exbii | ⊢ ( ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ↔ ∃ 𝑥 ∀ 𝑧 ( ( 𝑧 ∈ 𝑤 ∧ ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) ↔ 𝑧 = 𝑥 ) ) |
| 49 | 29 30 48 | 3bitr4i | ⊢ ( ∃! 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ↔ ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) |
| 50 | 49 | imbi2i | ⊢ ( ( 𝑡 ∈ 𝑤 → ∃! 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) ↔ ( 𝑡 ∈ 𝑤 → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
| 51 | 50 | albii | ⊢ ( ∀ 𝑡 ( 𝑡 ∈ 𝑤 → ∃! 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) ↔ ∀ 𝑡 ( 𝑡 ∈ 𝑤 → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
| 52 | df-ral | ⊢ ( ∀ 𝑡 ∈ 𝑤 ∃! 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ↔ ∀ 𝑡 ( 𝑡 ∈ 𝑤 → ∃! 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) ) | |
| 53 | nfv | ⊢ Ⅎ 𝑡 ( 𝑧 ∈ 𝑤 → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) | |
| 54 | nfv | ⊢ Ⅎ 𝑧 𝑡 ∈ 𝑤 | |
| 55 | nfa1 | ⊢ Ⅎ 𝑧 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) | |
| 56 | 55 | nfex | ⊢ Ⅎ 𝑧 ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) |
| 57 | 54 56 | nfim | ⊢ Ⅎ 𝑧 ( 𝑡 ∈ 𝑤 → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) |
| 58 | elequ1 | ⊢ ( 𝑧 = 𝑡 → ( 𝑧 ∈ 𝑤 ↔ 𝑡 ∈ 𝑤 ) ) | |
| 59 | 58 | imbi1d | ⊢ ( 𝑧 = 𝑡 → ( ( 𝑧 ∈ 𝑤 → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ↔ ( 𝑡 ∈ 𝑤 → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) ) |
| 60 | 53 57 59 | cbvalv1 | ⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ↔ ∀ 𝑡 ( 𝑡 ∈ 𝑤 → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
| 61 | 51 52 60 | 3bitr4i | ⊢ ( ∀ 𝑡 ∈ 𝑤 ∃! 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
| 62 | 61 | imbi2i | ⊢ ( ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ∈ 𝑤 ∃! 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) ↔ ( 𝑤 ∈ 𝑥 → ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) ) |
| 63 | 24 28 62 | 3bitr4i | ⊢ ( ∀ 𝑧 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ↔ ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ∈ 𝑤 ∃! 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) ) |
| 64 | 63 | albii | ⊢ ( ∀ 𝑤 ∀ 𝑧 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ↔ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ∈ 𝑤 ∃! 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) ) |
| 65 | alcom | ⊢ ( ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ↔ ∀ 𝑤 ∀ 𝑧 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) | |
| 66 | df-ral | ⊢ ( ∀ 𝑤 ∈ 𝑥 ∀ 𝑡 ∈ 𝑤 ∃! 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ↔ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∀ 𝑡 ∈ 𝑤 ∃! 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ) ) | |
| 67 | 64 65 66 | 3bitr4ri | ⊢ ( ∀ 𝑤 ∈ 𝑥 ∀ 𝑡 ∈ 𝑤 ∃! 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ↔ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
| 68 | 67 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑤 ∈ 𝑥 ∀ 𝑡 ∈ 𝑤 ∃! 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝑦 ( 𝑤 ∈ 𝑢 ∧ 𝑧 ∈ 𝑢 ) ↔ ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
| 69 | 23 68 | bitri | ⊢ ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑧 ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |