This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of two versions of the Axiom of Choice. The proof uses neither AC nor the Axiom of Regularity. The right-hand side is our original ax-ac . (Contributed by NM, 5-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | aceq0 | ⊢ ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑧 ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aceq1 | ⊢ ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑧 ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) | |
| 2 | equequ2 | ⊢ ( 𝑣 = 𝑥 → ( 𝑢 = 𝑣 ↔ 𝑢 = 𝑥 ) ) | |
| 3 | 2 | bibi2d | ⊢ ( 𝑣 = 𝑥 → ( ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ↔ ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑥 ) ) ) |
| 4 | elequ2 | ⊢ ( 𝑡 = 𝑥 → ( 𝑤 ∈ 𝑡 ↔ 𝑤 ∈ 𝑥 ) ) | |
| 5 | 4 | anbi2d | ⊢ ( 𝑡 = 𝑥 → ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ↔ ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) |
| 6 | elequ2 | ⊢ ( 𝑡 = 𝑥 → ( 𝑢 ∈ 𝑡 ↔ 𝑢 ∈ 𝑥 ) ) | |
| 7 | elequ1 | ⊢ ( 𝑡 = 𝑥 → ( 𝑡 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦 ) ) | |
| 8 | 6 7 | anbi12d | ⊢ ( 𝑡 = 𝑥 → ( ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ↔ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ) |
| 9 | 5 8 | anbi12d | ⊢ ( 𝑡 = 𝑥 → ( ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ) ) |
| 10 | 9 | cbvexvw | ⊢ ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ ∃ 𝑥 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ) |
| 11 | 10 | bibi1i | ⊢ ( ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑥 ) ↔ ( ∃ 𝑥 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑥 ) ) |
| 12 | 3 11 | bitrdi | ⊢ ( 𝑣 = 𝑥 → ( ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ↔ ( ∃ 𝑥 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑥 ) ) ) |
| 13 | 12 | albidv | ⊢ ( 𝑣 = 𝑥 → ( ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ↔ ∀ 𝑢 ( ∃ 𝑥 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑥 ) ) ) |
| 14 | elequ1 | ⊢ ( 𝑢 = 𝑧 → ( 𝑢 ∈ 𝑤 ↔ 𝑧 ∈ 𝑤 ) ) | |
| 15 | 14 | anbi1d | ⊢ ( 𝑢 = 𝑧 → ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ↔ ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) |
| 16 | elequ1 | ⊢ ( 𝑢 = 𝑧 → ( 𝑢 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) | |
| 17 | 16 | anbi1d | ⊢ ( 𝑢 = 𝑧 → ( ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ↔ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ) |
| 18 | 15 17 | anbi12d | ⊢ ( 𝑢 = 𝑧 → ( ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ) ) |
| 19 | 18 | exbidv | ⊢ ( 𝑢 = 𝑧 → ( ∃ 𝑥 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ) ) |
| 20 | equequ1 | ⊢ ( 𝑢 = 𝑧 → ( 𝑢 = 𝑥 ↔ 𝑧 = 𝑥 ) ) | |
| 21 | 19 20 | bibi12d | ⊢ ( 𝑢 = 𝑧 → ( ( ∃ 𝑥 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑥 ) ↔ ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
| 22 | 21 | cbvalvw | ⊢ ( ∀ 𝑢 ( ∃ 𝑥 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑥 ) ↔ ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) |
| 23 | 13 22 | bitrdi | ⊢ ( 𝑣 = 𝑥 → ( ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ↔ ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
| 24 | 23 | cbvexvw | ⊢ ( ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ↔ ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) |
| 25 | 24 | imbi2i | ⊢ ( ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ) ↔ ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
| 26 | 25 | 2albii | ⊢ ( ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ) ↔ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
| 27 | 26 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ) ↔ ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
| 28 | 1 27 | bitr4i | ⊢ ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑧 ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ) ) |