This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A proof of the well-ordering theorem weth , an Axiom of Choice equivalent, restricted to sets dominated by some ordinal (in particular finite sets and countable sets), proven in ZF without AC. (Contributed by Mario Carneiro, 5-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ac10ct | ⊢ ( ∃ 𝑦 ∈ On 𝐴 ≼ 𝑦 → ∃ 𝑥 𝑥 We 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑦 ∈ V | |
| 2 | 1 | brdom | ⊢ ( 𝐴 ≼ 𝑦 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝑦 ) |
| 3 | f1f | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝑦 → 𝑓 : 𝐴 ⟶ 𝑦 ) | |
| 4 | 3 | frnd | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝑦 → ran 𝑓 ⊆ 𝑦 ) |
| 5 | onss | ⊢ ( 𝑦 ∈ On → 𝑦 ⊆ On ) | |
| 6 | sstr2 | ⊢ ( ran 𝑓 ⊆ 𝑦 → ( 𝑦 ⊆ On → ran 𝑓 ⊆ On ) ) | |
| 7 | 4 5 6 | syl2im | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝑦 → ( 𝑦 ∈ On → ran 𝑓 ⊆ On ) ) |
| 8 | epweon | ⊢ E We On | |
| 9 | wess | ⊢ ( ran 𝑓 ⊆ On → ( E We On → E We ran 𝑓 ) ) | |
| 10 | 7 8 9 | syl6mpi | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝑦 → ( 𝑦 ∈ On → E We ran 𝑓 ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝐴 ≼ 𝑦 ∧ 𝑓 : 𝐴 –1-1→ 𝑦 ) → ( 𝑦 ∈ On → E We ran 𝑓 ) ) |
| 12 | f1f1orn | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝑦 → 𝑓 : 𝐴 –1-1-onto→ ran 𝑓 ) | |
| 13 | eqid | ⊢ { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } = { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } | |
| 14 | 13 | f1owe | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ ran 𝑓 → ( E We ran 𝑓 → { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } We 𝐴 ) ) |
| 15 | 12 14 | syl | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝑦 → ( E We ran 𝑓 → { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } We 𝐴 ) ) |
| 16 | weinxp | ⊢ ( { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } We 𝐴 ↔ ( { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 ) | |
| 17 | reldom | ⊢ Rel ≼ | |
| 18 | 17 | brrelex1i | ⊢ ( 𝐴 ≼ 𝑦 → 𝐴 ∈ V ) |
| 19 | sqxpexg | ⊢ ( 𝐴 ∈ V → ( 𝐴 × 𝐴 ) ∈ V ) | |
| 20 | incom | ⊢ ( ( 𝐴 × 𝐴 ) ∩ { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } ) = ( { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } ∩ ( 𝐴 × 𝐴 ) ) | |
| 21 | inex1g | ⊢ ( ( 𝐴 × 𝐴 ) ∈ V → ( ( 𝐴 × 𝐴 ) ∩ { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } ) ∈ V ) | |
| 22 | 20 21 | eqeltrrid | ⊢ ( ( 𝐴 × 𝐴 ) ∈ V → ( { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } ∩ ( 𝐴 × 𝐴 ) ) ∈ V ) |
| 23 | weeq1 | ⊢ ( 𝑥 = ( { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } ∩ ( 𝐴 × 𝐴 ) ) → ( 𝑥 We 𝐴 ↔ ( { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 ) ) | |
| 24 | 23 | spcegv | ⊢ ( ( { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } ∩ ( 𝐴 × 𝐴 ) ) ∈ V → ( ( { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 → ∃ 𝑥 𝑥 We 𝐴 ) ) |
| 25 | 18 19 22 24 | 4syl | ⊢ ( 𝐴 ≼ 𝑦 → ( ( { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 → ∃ 𝑥 𝑥 We 𝐴 ) ) |
| 26 | 16 25 | biimtrid | ⊢ ( 𝐴 ≼ 𝑦 → ( { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑓 ‘ 𝑤 ) E ( 𝑓 ‘ 𝑧 ) } We 𝐴 → ∃ 𝑥 𝑥 We 𝐴 ) ) |
| 27 | 15 26 | sylan9r | ⊢ ( ( 𝐴 ≼ 𝑦 ∧ 𝑓 : 𝐴 –1-1→ 𝑦 ) → ( E We ran 𝑓 → ∃ 𝑥 𝑥 We 𝐴 ) ) |
| 28 | 11 27 | syld | ⊢ ( ( 𝐴 ≼ 𝑦 ∧ 𝑓 : 𝐴 –1-1→ 𝑦 ) → ( 𝑦 ∈ On → ∃ 𝑥 𝑥 We 𝐴 ) ) |
| 29 | 28 | impancom | ⊢ ( ( 𝐴 ≼ 𝑦 ∧ 𝑦 ∈ On ) → ( 𝑓 : 𝐴 –1-1→ 𝑦 → ∃ 𝑥 𝑥 We 𝐴 ) ) |
| 30 | 29 | exlimdv | ⊢ ( ( 𝐴 ≼ 𝑦 ∧ 𝑦 ∈ On ) → ( ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝑦 → ∃ 𝑥 𝑥 We 𝐴 ) ) |
| 31 | 2 30 | biimtrid | ⊢ ( ( 𝐴 ≼ 𝑦 ∧ 𝑦 ∈ On ) → ( 𝐴 ≼ 𝑦 → ∃ 𝑥 𝑥 We 𝐴 ) ) |
| 32 | 31 | ex | ⊢ ( 𝐴 ≼ 𝑦 → ( 𝑦 ∈ On → ( 𝐴 ≼ 𝑦 → ∃ 𝑥 𝑥 We 𝐴 ) ) ) |
| 33 | 32 | pm2.43b | ⊢ ( 𝑦 ∈ On → ( 𝐴 ≼ 𝑦 → ∃ 𝑥 𝑥 We 𝐴 ) ) |
| 34 | 33 | rexlimiv | ⊢ ( ∃ 𝑦 ∈ On 𝐴 ≼ 𝑦 → ∃ 𝑥 𝑥 We 𝐴 ) |