This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A proof of the well-ordering theorem weth , an Axiom of Choice equivalent, restricted to sets dominated by some ordinal (in particular finite sets and countable sets), proven in ZF without AC. (Contributed by Mario Carneiro, 5-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ac10ct | |- ( E. y e. On A ~<_ y -> E. x x We A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- y e. _V |
|
| 2 | 1 | brdom | |- ( A ~<_ y <-> E. f f : A -1-1-> y ) |
| 3 | f1f | |- ( f : A -1-1-> y -> f : A --> y ) |
|
| 4 | 3 | frnd | |- ( f : A -1-1-> y -> ran f C_ y ) |
| 5 | onss | |- ( y e. On -> y C_ On ) |
|
| 6 | sstr2 | |- ( ran f C_ y -> ( y C_ On -> ran f C_ On ) ) |
|
| 7 | 4 5 6 | syl2im | |- ( f : A -1-1-> y -> ( y e. On -> ran f C_ On ) ) |
| 8 | epweon | |- _E We On |
|
| 9 | wess | |- ( ran f C_ On -> ( _E We On -> _E We ran f ) ) |
|
| 10 | 7 8 9 | syl6mpi | |- ( f : A -1-1-> y -> ( y e. On -> _E We ran f ) ) |
| 11 | 10 | adantl | |- ( ( A ~<_ y /\ f : A -1-1-> y ) -> ( y e. On -> _E We ran f ) ) |
| 12 | f1f1orn | |- ( f : A -1-1-> y -> f : A -1-1-onto-> ran f ) |
|
| 13 | eqid | |- { <. w , z >. | ( f ` w ) _E ( f ` z ) } = { <. w , z >. | ( f ` w ) _E ( f ` z ) } |
|
| 14 | 13 | f1owe | |- ( f : A -1-1-onto-> ran f -> ( _E We ran f -> { <. w , z >. | ( f ` w ) _E ( f ` z ) } We A ) ) |
| 15 | 12 14 | syl | |- ( f : A -1-1-> y -> ( _E We ran f -> { <. w , z >. | ( f ` w ) _E ( f ` z ) } We A ) ) |
| 16 | weinxp | |- ( { <. w , z >. | ( f ` w ) _E ( f ` z ) } We A <-> ( { <. w , z >. | ( f ` w ) _E ( f ` z ) } i^i ( A X. A ) ) We A ) |
|
| 17 | reldom | |- Rel ~<_ |
|
| 18 | 17 | brrelex1i | |- ( A ~<_ y -> A e. _V ) |
| 19 | sqxpexg | |- ( A e. _V -> ( A X. A ) e. _V ) |
|
| 20 | incom | |- ( ( A X. A ) i^i { <. w , z >. | ( f ` w ) _E ( f ` z ) } ) = ( { <. w , z >. | ( f ` w ) _E ( f ` z ) } i^i ( A X. A ) ) |
|
| 21 | inex1g | |- ( ( A X. A ) e. _V -> ( ( A X. A ) i^i { <. w , z >. | ( f ` w ) _E ( f ` z ) } ) e. _V ) |
|
| 22 | 20 21 | eqeltrrid | |- ( ( A X. A ) e. _V -> ( { <. w , z >. | ( f ` w ) _E ( f ` z ) } i^i ( A X. A ) ) e. _V ) |
| 23 | weeq1 | |- ( x = ( { <. w , z >. | ( f ` w ) _E ( f ` z ) } i^i ( A X. A ) ) -> ( x We A <-> ( { <. w , z >. | ( f ` w ) _E ( f ` z ) } i^i ( A X. A ) ) We A ) ) |
|
| 24 | 23 | spcegv | |- ( ( { <. w , z >. | ( f ` w ) _E ( f ` z ) } i^i ( A X. A ) ) e. _V -> ( ( { <. w , z >. | ( f ` w ) _E ( f ` z ) } i^i ( A X. A ) ) We A -> E. x x We A ) ) |
| 25 | 18 19 22 24 | 4syl | |- ( A ~<_ y -> ( ( { <. w , z >. | ( f ` w ) _E ( f ` z ) } i^i ( A X. A ) ) We A -> E. x x We A ) ) |
| 26 | 16 25 | biimtrid | |- ( A ~<_ y -> ( { <. w , z >. | ( f ` w ) _E ( f ` z ) } We A -> E. x x We A ) ) |
| 27 | 15 26 | sylan9r | |- ( ( A ~<_ y /\ f : A -1-1-> y ) -> ( _E We ran f -> E. x x We A ) ) |
| 28 | 11 27 | syld | |- ( ( A ~<_ y /\ f : A -1-1-> y ) -> ( y e. On -> E. x x We A ) ) |
| 29 | 28 | impancom | |- ( ( A ~<_ y /\ y e. On ) -> ( f : A -1-1-> y -> E. x x We A ) ) |
| 30 | 29 | exlimdv | |- ( ( A ~<_ y /\ y e. On ) -> ( E. f f : A -1-1-> y -> E. x x We A ) ) |
| 31 | 2 30 | biimtrid | |- ( ( A ~<_ y /\ y e. On ) -> ( A ~<_ y -> E. x x We A ) ) |
| 32 | 31 | ex | |- ( A ~<_ y -> ( y e. On -> ( A ~<_ y -> E. x x We A ) ) ) |
| 33 | 32 | pm2.43b | |- ( y e. On -> ( A ~<_ y -> E. x x We A ) ) |
| 34 | 33 | rexlimiv | |- ( E. y e. On A ~<_ y -> E. x x We A ) |