This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of an absolute value is zero iff the argument is zero. (Contributed by Mario Carneiro, 8-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abvf.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| abvf.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| abveq0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | abveq0 | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑋 ) = 0 ↔ 𝑋 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abvf.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| 2 | abvf.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | abveq0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | 1 | abvrcl | ⊢ ( 𝐹 ∈ 𝐴 → 𝑅 ∈ Ring ) |
| 5 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 7 | 1 2 5 6 3 | isabv | ⊢ ( 𝑅 ∈ Ring → ( 𝐹 ∈ 𝐴 ↔ ( 𝐹 : 𝐵 ⟶ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) ) |
| 8 | 4 7 | syl | ⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ∈ 𝐴 ↔ ( 𝐹 : 𝐵 ⟶ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) ) |
| 9 | 8 | ibi | ⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 : 𝐵 ⟶ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) |
| 10 | simpl | ⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) | |
| 11 | 10 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) → ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) |
| 12 | 9 11 | simpl2im | ⊢ ( 𝐹 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) |
| 13 | fveqeq2 | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ ( 𝐹 ‘ 𝑋 ) = 0 ) ) | |
| 14 | eqeq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 = 0 ↔ 𝑋 = 0 ) ) | |
| 15 | 13 14 | bibi12d | ⊢ ( 𝑥 = 𝑋 → ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ↔ ( ( 𝐹 ‘ 𝑋 ) = 0 ↔ 𝑋 = 0 ) ) ) |
| 16 | 15 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑋 ) = 0 ↔ 𝑋 = 0 ) ) |
| 17 | 12 16 | sylan | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑋 ) = 0 ↔ 𝑋 = 0 ) ) |