This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The maximum of two numbers using absolute value. (Contributed by NM, 7-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absmax | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) = ( ( ( 𝐴 + 𝐵 ) + ( abs ‘ ( 𝐴 − 𝐵 ) ) ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 2 | 2cn | ⊢ 2 ∈ ℂ | |
| 3 | 2ne0 | ⊢ 2 ≠ 0 | |
| 4 | divcan3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( ( 2 · 𝐴 ) / 2 ) = 𝐴 ) | |
| 5 | 2 3 4 | mp3an23 | ⊢ ( 𝐴 ∈ ℂ → ( ( 2 · 𝐴 ) / 2 ) = 𝐴 ) |
| 6 | 1 5 | syl | ⊢ ( 𝐴 ∈ ℝ → ( ( 2 · 𝐴 ) / 2 ) = 𝐴 ) |
| 7 | 6 | ad2antlr | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( ( 2 · 𝐴 ) / 2 ) = 𝐴 ) |
| 8 | ltle | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 < 𝐴 → 𝐵 ≤ 𝐴 ) ) | |
| 9 | 8 | imp | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → 𝐵 ≤ 𝐴 ) |
| 10 | abssubge0 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( 𝐴 − 𝐵 ) ) | |
| 11 | 10 | 3expa | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 ≤ 𝐴 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( 𝐴 − 𝐵 ) ) |
| 12 | 9 11 | syldan | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( 𝐴 − 𝐵 ) ) |
| 13 | 12 | oveq2d | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( ( 𝐴 + 𝐵 ) + ( abs ‘ ( 𝐴 − 𝐵 ) ) ) = ( ( 𝐴 + 𝐵 ) + ( 𝐴 − 𝐵 ) ) ) |
| 14 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 15 | simpr | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 16 | simpl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 17 | 15 16 15 | ppncand | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + ( 𝐴 − 𝐵 ) ) = ( 𝐴 + 𝐴 ) ) |
| 18 | 2times | ⊢ ( 𝐴 ∈ ℂ → ( 2 · 𝐴 ) = ( 𝐴 + 𝐴 ) ) | |
| 19 | 18 | adantl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 2 · 𝐴 ) = ( 𝐴 + 𝐴 ) ) |
| 20 | 17 19 | eqtr4d | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + ( 𝐴 − 𝐵 ) ) = ( 2 · 𝐴 ) ) |
| 21 | 14 1 20 | syl2an | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐴 + 𝐵 ) + ( 𝐴 − 𝐵 ) ) = ( 2 · 𝐴 ) ) |
| 22 | 21 | adantr | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( ( 𝐴 + 𝐵 ) + ( 𝐴 − 𝐵 ) ) = ( 2 · 𝐴 ) ) |
| 23 | 13 22 | eqtrd | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( ( 𝐴 + 𝐵 ) + ( abs ‘ ( 𝐴 − 𝐵 ) ) ) = ( 2 · 𝐴 ) ) |
| 24 | 23 | oveq1d | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( ( ( 𝐴 + 𝐵 ) + ( abs ‘ ( 𝐴 − 𝐵 ) ) ) / 2 ) = ( ( 2 · 𝐴 ) / 2 ) ) |
| 25 | ltnle | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐵 ) ) | |
| 26 | 25 | biimpa | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ¬ 𝐴 ≤ 𝐵 ) |
| 27 | 26 | iffalsed | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) = 𝐴 ) |
| 28 | 7 24 27 | 3eqtr4rd | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) = ( ( ( 𝐴 + 𝐵 ) + ( abs ‘ ( 𝐴 − 𝐵 ) ) ) / 2 ) ) |
| 29 | 28 | ancom1s | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) = ( ( ( 𝐴 + 𝐵 ) + ( abs ‘ ( 𝐴 − 𝐵 ) ) ) / 2 ) ) |
| 30 | divcan3 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( ( 2 · 𝐵 ) / 2 ) = 𝐵 ) | |
| 31 | 2 3 30 | mp3an23 | ⊢ ( 𝐵 ∈ ℂ → ( ( 2 · 𝐵 ) / 2 ) = 𝐵 ) |
| 32 | 14 31 | syl | ⊢ ( 𝐵 ∈ ℝ → ( ( 2 · 𝐵 ) / 2 ) = 𝐵 ) |
| 33 | 32 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( ( 2 · 𝐵 ) / 2 ) = 𝐵 ) |
| 34 | abssuble0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) | |
| 35 | 34 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| 36 | 35 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 + 𝐵 ) + ( abs ‘ ( 𝐴 − 𝐵 ) ) ) = ( ( 𝐴 + 𝐵 ) + ( 𝐵 − 𝐴 ) ) ) |
| 37 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 38 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 39 | 37 38 37 | ppncand | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐵 + 𝐴 ) + ( 𝐵 − 𝐴 ) ) = ( 𝐵 + 𝐵 ) ) |
| 40 | addcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) | |
| 41 | 40 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + ( 𝐵 − 𝐴 ) ) = ( ( 𝐵 + 𝐴 ) + ( 𝐵 − 𝐴 ) ) ) |
| 42 | 2times | ⊢ ( 𝐵 ∈ ℂ → ( 2 · 𝐵 ) = ( 𝐵 + 𝐵 ) ) | |
| 43 | 42 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · 𝐵 ) = ( 𝐵 + 𝐵 ) ) |
| 44 | 39 41 43 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + ( 𝐵 − 𝐴 ) ) = ( 2 · 𝐵 ) ) |
| 45 | 1 14 44 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 𝐵 ) + ( 𝐵 − 𝐴 ) ) = ( 2 · 𝐵 ) ) |
| 46 | 45 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 + 𝐵 ) + ( 𝐵 − 𝐴 ) ) = ( 2 · 𝐵 ) ) |
| 47 | 36 46 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 + 𝐵 ) + ( abs ‘ ( 𝐴 − 𝐵 ) ) ) = ( 2 · 𝐵 ) ) |
| 48 | 47 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( ( ( 𝐴 + 𝐵 ) + ( abs ‘ ( 𝐴 − 𝐵 ) ) ) / 2 ) = ( ( 2 · 𝐵 ) / 2 ) ) |
| 49 | iftrue | ⊢ ( 𝐴 ≤ 𝐵 → if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) = 𝐵 ) | |
| 50 | 49 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) = 𝐵 ) |
| 51 | 33 48 50 | 3eqtr4rd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) = ( ( ( 𝐴 + 𝐵 ) + ( abs ‘ ( 𝐴 − 𝐵 ) ) ) / 2 ) ) |
| 52 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) | |
| 53 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
| 54 | 29 51 52 53 | ltlecasei | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) = ( ( ( 𝐴 + 𝐵 ) + ( abs ‘ ( 𝐴 − 𝐵 ) ) ) / 2 ) ) |