This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The maximum of two numbers using absolute value. (Contributed by NM, 7-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absmax | |- ( ( A e. RR /\ B e. RR ) -> if ( A <_ B , B , A ) = ( ( ( A + B ) + ( abs ` ( A - B ) ) ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( A e. RR -> A e. CC ) |
|
| 2 | 2cn | |- 2 e. CC |
|
| 3 | 2ne0 | |- 2 =/= 0 |
|
| 4 | divcan3 | |- ( ( A e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. A ) / 2 ) = A ) |
|
| 5 | 2 3 4 | mp3an23 | |- ( A e. CC -> ( ( 2 x. A ) / 2 ) = A ) |
| 6 | 1 5 | syl | |- ( A e. RR -> ( ( 2 x. A ) / 2 ) = A ) |
| 7 | 6 | ad2antlr | |- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> ( ( 2 x. A ) / 2 ) = A ) |
| 8 | ltle | |- ( ( B e. RR /\ A e. RR ) -> ( B < A -> B <_ A ) ) |
|
| 9 | 8 | imp | |- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> B <_ A ) |
| 10 | abssubge0 | |- ( ( B e. RR /\ A e. RR /\ B <_ A ) -> ( abs ` ( A - B ) ) = ( A - B ) ) |
|
| 11 | 10 | 3expa | |- ( ( ( B e. RR /\ A e. RR ) /\ B <_ A ) -> ( abs ` ( A - B ) ) = ( A - B ) ) |
| 12 | 9 11 | syldan | |- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> ( abs ` ( A - B ) ) = ( A - B ) ) |
| 13 | 12 | oveq2d | |- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> ( ( A + B ) + ( abs ` ( A - B ) ) ) = ( ( A + B ) + ( A - B ) ) ) |
| 14 | recn | |- ( B e. RR -> B e. CC ) |
|
| 15 | simpr | |- ( ( B e. CC /\ A e. CC ) -> A e. CC ) |
|
| 16 | simpl | |- ( ( B e. CC /\ A e. CC ) -> B e. CC ) |
|
| 17 | 15 16 15 | ppncand | |- ( ( B e. CC /\ A e. CC ) -> ( ( A + B ) + ( A - B ) ) = ( A + A ) ) |
| 18 | 2times | |- ( A e. CC -> ( 2 x. A ) = ( A + A ) ) |
|
| 19 | 18 | adantl | |- ( ( B e. CC /\ A e. CC ) -> ( 2 x. A ) = ( A + A ) ) |
| 20 | 17 19 | eqtr4d | |- ( ( B e. CC /\ A e. CC ) -> ( ( A + B ) + ( A - B ) ) = ( 2 x. A ) ) |
| 21 | 14 1 20 | syl2an | |- ( ( B e. RR /\ A e. RR ) -> ( ( A + B ) + ( A - B ) ) = ( 2 x. A ) ) |
| 22 | 21 | adantr | |- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> ( ( A + B ) + ( A - B ) ) = ( 2 x. A ) ) |
| 23 | 13 22 | eqtrd | |- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> ( ( A + B ) + ( abs ` ( A - B ) ) ) = ( 2 x. A ) ) |
| 24 | 23 | oveq1d | |- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> ( ( ( A + B ) + ( abs ` ( A - B ) ) ) / 2 ) = ( ( 2 x. A ) / 2 ) ) |
| 25 | ltnle | |- ( ( B e. RR /\ A e. RR ) -> ( B < A <-> -. A <_ B ) ) |
|
| 26 | 25 | biimpa | |- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> -. A <_ B ) |
| 27 | 26 | iffalsed | |- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> if ( A <_ B , B , A ) = A ) |
| 28 | 7 24 27 | 3eqtr4rd | |- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> if ( A <_ B , B , A ) = ( ( ( A + B ) + ( abs ` ( A - B ) ) ) / 2 ) ) |
| 29 | 28 | ancom1s | |- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> if ( A <_ B , B , A ) = ( ( ( A + B ) + ( abs ` ( A - B ) ) ) / 2 ) ) |
| 30 | divcan3 | |- ( ( B e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. B ) / 2 ) = B ) |
|
| 31 | 2 3 30 | mp3an23 | |- ( B e. CC -> ( ( 2 x. B ) / 2 ) = B ) |
| 32 | 14 31 | syl | |- ( B e. RR -> ( ( 2 x. B ) / 2 ) = B ) |
| 33 | 32 | ad2antlr | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( ( 2 x. B ) / 2 ) = B ) |
| 34 | abssuble0 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( abs ` ( A - B ) ) = ( B - A ) ) |
|
| 35 | 34 | 3expa | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( abs ` ( A - B ) ) = ( B - A ) ) |
| 36 | 35 | oveq2d | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( ( A + B ) + ( abs ` ( A - B ) ) ) = ( ( A + B ) + ( B - A ) ) ) |
| 37 | simpr | |- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
|
| 38 | simpl | |- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
|
| 39 | 37 38 37 | ppncand | |- ( ( A e. CC /\ B e. CC ) -> ( ( B + A ) + ( B - A ) ) = ( B + B ) ) |
| 40 | addcom | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) ) |
|
| 41 | 40 | oveq1d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) + ( B - A ) ) = ( ( B + A ) + ( B - A ) ) ) |
| 42 | 2times | |- ( B e. CC -> ( 2 x. B ) = ( B + B ) ) |
|
| 43 | 42 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( 2 x. B ) = ( B + B ) ) |
| 44 | 39 41 43 | 3eqtr4d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) + ( B - A ) ) = ( 2 x. B ) ) |
| 45 | 1 14 44 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( ( A + B ) + ( B - A ) ) = ( 2 x. B ) ) |
| 46 | 45 | adantr | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( ( A + B ) + ( B - A ) ) = ( 2 x. B ) ) |
| 47 | 36 46 | eqtrd | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( ( A + B ) + ( abs ` ( A - B ) ) ) = ( 2 x. B ) ) |
| 48 | 47 | oveq1d | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( ( ( A + B ) + ( abs ` ( A - B ) ) ) / 2 ) = ( ( 2 x. B ) / 2 ) ) |
| 49 | iftrue | |- ( A <_ B -> if ( A <_ B , B , A ) = B ) |
|
| 50 | 49 | adantl | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> if ( A <_ B , B , A ) = B ) |
| 51 | 33 48 50 | 3eqtr4rd | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> if ( A <_ B , B , A ) = ( ( ( A + B ) + ( abs ` ( A - B ) ) ) / 2 ) ) |
| 52 | simpr | |- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
|
| 53 | simpl | |- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
|
| 54 | 29 51 52 53 | ltlecasei | |- ( ( A e. RR /\ B e. RR ) -> if ( A <_ B , B , A ) = ( ( ( A + B ) + ( abs ` ( A - B ) ) ) / 2 ) ) |