This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound on the magnitude of the complex logarithm function. (Contributed by Mario Carneiro, 3-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abslogle | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( log ‘ 𝐴 ) ) ≤ ( ( abs ‘ ( log ‘ ( abs ‘ 𝐴 ) ) ) + π ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) | |
| 2 | 1 | abscld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 3 | absrpcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) | |
| 4 | relogcl | ⊢ ( ( abs ‘ 𝐴 ) ∈ ℝ+ → ( log ‘ ( abs ‘ 𝐴 ) ) ∈ ℝ ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
| 6 | 5 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ ( abs ‘ 𝐴 ) ) ∈ ℂ ) |
| 7 | 6 | abscld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( log ‘ ( abs ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 8 | 1 | imcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 9 | 8 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 10 | 9 | abscld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 11 | 7 10 | readdcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ ( log ‘ ( abs ‘ 𝐴 ) ) ) + ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ∈ ℝ ) |
| 12 | pire | ⊢ π ∈ ℝ | |
| 13 | 12 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → π ∈ ℝ ) |
| 14 | 7 13 | readdcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ ( log ‘ ( abs ‘ 𝐴 ) ) ) + π ) ∈ ℝ ) |
| 15 | 1 | recld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 16 | 15 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 17 | ax-icn | ⊢ i ∈ ℂ | |
| 18 | 17 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → i ∈ ℂ ) |
| 19 | 18 9 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 20 | 16 19 | abstrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( ( ℜ ‘ ( log ‘ 𝐴 ) ) + ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ≤ ( ( abs ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) + ( abs ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
| 21 | 1 | replimd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) = ( ( ℜ ‘ ( log ‘ 𝐴 ) ) + ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
| 22 | 21 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( log ‘ 𝐴 ) ) = ( abs ‘ ( ( ℜ ‘ ( log ‘ 𝐴 ) ) + ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
| 23 | relog | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝐴 ) ) = ( log ‘ ( abs ‘ 𝐴 ) ) ) | |
| 24 | 23 | eqcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ ( abs ‘ 𝐴 ) ) = ( ℜ ‘ ( log ‘ 𝐴 ) ) ) |
| 25 | 24 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( log ‘ ( abs ‘ 𝐴 ) ) ) = ( abs ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 26 | 18 9 | absmuld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( ( abs ‘ i ) · ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
| 27 | absi | ⊢ ( abs ‘ i ) = 1 | |
| 28 | 27 | oveq1i | ⊢ ( ( abs ‘ i ) · ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( 1 · ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 29 | 10 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 30 | 29 | mullidd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 · ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 31 | 28 30 | eqtrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ i ) · ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 32 | 26 31 | eqtr2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( abs ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
| 33 | 25 32 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ ( log ‘ ( abs ‘ 𝐴 ) ) ) + ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( ( abs ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) + ( abs ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
| 34 | 20 22 33 | 3brtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( log ‘ 𝐴 ) ) ≤ ( ( abs ‘ ( log ‘ ( abs ‘ 𝐴 ) ) ) + ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
| 35 | abslogimle | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) | |
| 36 | 10 13 7 35 | leadd2dd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ ( log ‘ ( abs ‘ 𝐴 ) ) ) + ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ≤ ( ( abs ‘ ( log ‘ ( abs ‘ 𝐴 ) ) ) + π ) ) |
| 37 | 2 11 14 34 36 | letrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( log ‘ 𝐴 ) ) ≤ ( ( abs ‘ ( log ‘ ( abs ‘ 𝐴 ) ) ) + π ) ) |