This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound on the magnitude of the complex logarithm function. (Contributed by Mario Carneiro, 3-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abslogle | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( log ` A ) ) <_ ( ( abs ` ( log ` ( abs ` A ) ) ) + _pi ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcl | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
|
| 2 | 1 | abscld | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( log ` A ) ) e. RR ) |
| 3 | absrpcl | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR+ ) |
|
| 4 | relogcl | |- ( ( abs ` A ) e. RR+ -> ( log ` ( abs ` A ) ) e. RR ) |
|
| 5 | 3 4 | syl | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` ( abs ` A ) ) e. RR ) |
| 6 | 5 | recnd | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` ( abs ` A ) ) e. CC ) |
| 7 | 6 | abscld | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( log ` ( abs ` A ) ) ) e. RR ) |
| 8 | 1 | imcld | |- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( log ` A ) ) e. RR ) |
| 9 | 8 | recnd | |- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( log ` A ) ) e. CC ) |
| 10 | 9 | abscld | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( Im ` ( log ` A ) ) ) e. RR ) |
| 11 | 7 10 | readdcld | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` ( log ` ( abs ` A ) ) ) + ( abs ` ( Im ` ( log ` A ) ) ) ) e. RR ) |
| 12 | pire | |- _pi e. RR |
|
| 13 | 12 | a1i | |- ( ( A e. CC /\ A =/= 0 ) -> _pi e. RR ) |
| 14 | 7 13 | readdcld | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` ( log ` ( abs ` A ) ) ) + _pi ) e. RR ) |
| 15 | 1 | recld | |- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) e. RR ) |
| 16 | 15 | recnd | |- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) e. CC ) |
| 17 | ax-icn | |- _i e. CC |
|
| 18 | 17 | a1i | |- ( ( A e. CC /\ A =/= 0 ) -> _i e. CC ) |
| 19 | 18 9 | mulcld | |- ( ( A e. CC /\ A =/= 0 ) -> ( _i x. ( Im ` ( log ` A ) ) ) e. CC ) |
| 20 | 16 19 | abstrid | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( ( Re ` ( log ` A ) ) + ( _i x. ( Im ` ( log ` A ) ) ) ) ) <_ ( ( abs ` ( Re ` ( log ` A ) ) ) + ( abs ` ( _i x. ( Im ` ( log ` A ) ) ) ) ) ) |
| 21 | 1 | replimd | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) = ( ( Re ` ( log ` A ) ) + ( _i x. ( Im ` ( log ` A ) ) ) ) ) |
| 22 | 21 | fveq2d | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( log ` A ) ) = ( abs ` ( ( Re ` ( log ` A ) ) + ( _i x. ( Im ` ( log ` A ) ) ) ) ) ) |
| 23 | relog | |- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) = ( log ` ( abs ` A ) ) ) |
|
| 24 | 23 | eqcomd | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` ( abs ` A ) ) = ( Re ` ( log ` A ) ) ) |
| 25 | 24 | fveq2d | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( log ` ( abs ` A ) ) ) = ( abs ` ( Re ` ( log ` A ) ) ) ) |
| 26 | 18 9 | absmuld | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( _i x. ( Im ` ( log ` A ) ) ) ) = ( ( abs ` _i ) x. ( abs ` ( Im ` ( log ` A ) ) ) ) ) |
| 27 | absi | |- ( abs ` _i ) = 1 |
|
| 28 | 27 | oveq1i | |- ( ( abs ` _i ) x. ( abs ` ( Im ` ( log ` A ) ) ) ) = ( 1 x. ( abs ` ( Im ` ( log ` A ) ) ) ) |
| 29 | 10 | recnd | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( Im ` ( log ` A ) ) ) e. CC ) |
| 30 | 29 | mullidd | |- ( ( A e. CC /\ A =/= 0 ) -> ( 1 x. ( abs ` ( Im ` ( log ` A ) ) ) ) = ( abs ` ( Im ` ( log ` A ) ) ) ) |
| 31 | 28 30 | eqtrid | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` _i ) x. ( abs ` ( Im ` ( log ` A ) ) ) ) = ( abs ` ( Im ` ( log ` A ) ) ) ) |
| 32 | 26 31 | eqtr2d | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( Im ` ( log ` A ) ) ) = ( abs ` ( _i x. ( Im ` ( log ` A ) ) ) ) ) |
| 33 | 25 32 | oveq12d | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` ( log ` ( abs ` A ) ) ) + ( abs ` ( Im ` ( log ` A ) ) ) ) = ( ( abs ` ( Re ` ( log ` A ) ) ) + ( abs ` ( _i x. ( Im ` ( log ` A ) ) ) ) ) ) |
| 34 | 20 22 33 | 3brtr4d | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( log ` A ) ) <_ ( ( abs ` ( log ` ( abs ` A ) ) ) + ( abs ` ( Im ` ( log ` A ) ) ) ) ) |
| 35 | abslogimle | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( Im ` ( log ` A ) ) ) <_ _pi ) |
|
| 36 | 10 13 7 35 | leadd2dd | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` ( log ` ( abs ` A ) ) ) + ( abs ` ( Im ` ( log ` A ) ) ) ) <_ ( ( abs ` ( log ` ( abs ` A ) ) ) + _pi ) ) |
| 37 | 2 11 14 34 36 | letrd | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( log ` A ) ) <_ ( ( abs ` ( log ` ( abs ` A ) ) ) + _pi ) ) |