This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Real part of a logarithm. (Contributed by Mario Carneiro, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relog | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝐴 ) ) = ( log ‘ ( abs ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) | |
| 2 | 1 | recld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 3 | relogef | ⊢ ( ( ℜ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ → ( log ‘ ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) = ( ℜ ‘ ( log ‘ 𝐴 ) ) ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) = ( ℜ ‘ ( log ‘ 𝐴 ) ) ) |
| 5 | absef | ⊢ ( ( log ‘ 𝐴 ) ∈ ℂ → ( abs ‘ ( exp ‘ ( log ‘ 𝐴 ) ) ) = ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) | |
| 6 | 1 5 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( exp ‘ ( log ‘ 𝐴 ) ) ) = ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 7 | eflog | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) | |
| 8 | 7 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( exp ‘ ( log ‘ 𝐴 ) ) ) = ( abs ‘ 𝐴 ) ) |
| 9 | 6 8 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) = ( abs ‘ 𝐴 ) ) |
| 10 | 9 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) = ( log ‘ ( abs ‘ 𝐴 ) ) ) |
| 11 | 4 10 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝐴 ) ) = ( log ‘ ( abs ‘ 𝐴 ) ) ) |