This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The imaginary part of the logarithm function has absolute value less than pi. (Contributed by Mario Carneiro, 3-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abslogimle | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pire | ⊢ π ∈ ℝ | |
| 2 | 1 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → π ∈ ℝ ) |
| 3 | 2 | renegcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → - π ∈ ℝ ) |
| 4 | logcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) | |
| 5 | 4 | imcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 6 | logimcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) | |
| 7 | 6 | simpld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 8 | 3 5 7 | ltled | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 9 | 6 | simprd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) |
| 10 | 5 2 | absled | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ↔ ( - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) ) |
| 11 | 8 9 10 | mpbir2and | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) |