This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxplt | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 < 𝐶 ↔ ( 𝐴 ↑𝑐 𝐵 ) < ( 𝐴 ↑𝑐 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → 𝐵 ∈ ℝ ) | |
| 2 | rplogcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( log ‘ 𝐴 ) ∈ ℝ+ ) | |
| 3 | 2 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( log ‘ 𝐴 ) ∈ ℝ+ ) |
| 4 | 3 | rpred | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 5 | 1 4 | remulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 6 | simprr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → 𝐶 ∈ ℝ ) | |
| 7 | 6 4 | remulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐶 · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 8 | eflt | ⊢ ( ( ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℝ ∧ ( 𝐶 · ( log ‘ 𝐴 ) ) ∈ ℝ ) → ( ( 𝐵 · ( log ‘ 𝐴 ) ) < ( 𝐶 · ( log ‘ 𝐴 ) ) ↔ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) < ( exp ‘ ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) ) | |
| 9 | 5 7 8 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ( 𝐵 · ( log ‘ 𝐴 ) ) < ( 𝐶 · ( log ‘ 𝐴 ) ) ↔ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) < ( exp ‘ ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) ) |
| 10 | 1 6 3 | ltmul1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 < 𝐶 ↔ ( 𝐵 · ( log ‘ 𝐴 ) ) < ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) |
| 11 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → 𝐴 ∈ ℝ ) | |
| 12 | 11 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → 𝐴 ∈ ℂ ) |
| 13 | 0red | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → 0 ∈ ℝ ) | |
| 14 | 1red | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → 1 ∈ ℝ ) | |
| 15 | 0lt1 | ⊢ 0 < 1 | |
| 16 | 15 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → 0 < 1 ) |
| 17 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → 1 < 𝐴 ) | |
| 18 | 13 14 11 16 17 | lttrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → 0 < 𝐴 ) |
| 19 | 18 | gt0ne0d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → 𝐴 ≠ 0 ) |
| 20 | 1 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → 𝐵 ∈ ℂ ) |
| 21 | cxpef | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) | |
| 22 | 12 19 20 21 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐴 ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) |
| 23 | 6 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → 𝐶 ∈ ℂ ) |
| 24 | cxpef | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐶 ) = ( exp ‘ ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) | |
| 25 | 12 19 23 24 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐴 ↑𝑐 𝐶 ) = ( exp ‘ ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) |
| 26 | 22 25 | breq12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ( 𝐴 ↑𝑐 𝐵 ) < ( 𝐴 ↑𝑐 𝐶 ) ↔ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) < ( exp ‘ ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) ) |
| 27 | 9 10 26 | 3bitr4d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 < 𝐶 ↔ ( 𝐴 ↑𝑐 𝐵 ) < ( 𝐴 ↑𝑐 𝐶 ) ) ) |