This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Real closure of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recxpcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 2 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 3 | cxpval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) = if ( 𝐴 = 0 , if ( 𝐵 = 0 , 1 , 0 ) , ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ↑𝑐 𝐵 ) = if ( 𝐴 = 0 , if ( 𝐵 = 0 , 1 , 0 ) , ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) |
| 5 | 4 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ↑𝑐 𝐵 ) = if ( 𝐴 = 0 , if ( 𝐵 = 0 , 1 , 0 ) , ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) |
| 6 | 1re | ⊢ 1 ∈ ℝ | |
| 7 | 0re | ⊢ 0 ∈ ℝ | |
| 8 | 6 7 | ifcli | ⊢ if ( 𝐵 = 0 , 1 , 0 ) ∈ ℝ |
| 9 | 8 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 0 ) → if ( 𝐵 = 0 , 1 , 0 ) ∈ ℝ ) |
| 10 | df-ne | ⊢ ( 𝐴 ≠ 0 ↔ ¬ 𝐴 = 0 ) | |
| 11 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → 𝐵 ∈ ℝ ) | |
| 12 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℝ ) | |
| 13 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → 0 ≤ 𝐴 ) | |
| 14 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → 𝐴 ≠ 0 ) | |
| 15 | 12 13 14 | ne0gt0d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → 0 < 𝐴 ) |
| 16 | 12 15 | elrpd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℝ+ ) |
| 17 | 16 | relogcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 18 | 11 17 | remulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 19 | 18 | reefcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 20 | 10 19 | sylan2br | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ ) ∧ ¬ 𝐴 = 0 ) → ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 21 | 9 20 | ifclda | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ ) → if ( 𝐴 = 0 , if ( 𝐵 = 0 , 1 , 0 ) , ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ∈ ℝ ) |
| 22 | 5 21 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℝ ) |