This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law for double group division. (Contributed by NM, 29-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abldiv.1 | ⊢ 𝑋 = ran 𝐺 | |
| abldiv.3 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | ||
| Assertion | ablodivdiv4 | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐵 ) 𝐷 𝐶 ) = ( 𝐴 𝐷 ( 𝐵 𝐺 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abldiv.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | abldiv.3 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | |
| 3 | ablogrpo | ⊢ ( 𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp ) | |
| 4 | simpl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐺 ∈ GrpOp ) | |
| 5 | 1 2 | grpodivcl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) ∈ 𝑋 ) |
| 6 | 5 | 3adant3r3 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) ∈ 𝑋 ) |
| 7 | simpr3 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐶 ∈ 𝑋 ) | |
| 8 | eqid | ⊢ ( inv ‘ 𝐺 ) = ( inv ‘ 𝐺 ) | |
| 9 | 1 8 2 | grpodivval | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 𝐷 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) 𝐷 𝐶 ) = ( ( 𝐴 𝐷 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) |
| 10 | 4 6 7 9 | syl3anc | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐵 ) 𝐷 𝐶 ) = ( ( 𝐴 𝐷 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) |
| 11 | 3 10 | sylan | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐵 ) 𝐷 𝐶 ) = ( ( 𝐴 𝐷 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) |
| 12 | simpr1 | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) | |
| 13 | simpr2 | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) | |
| 14 | simp3 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → 𝐶 ∈ 𝑋 ) | |
| 15 | 1 8 | grpoinvcl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐶 ∈ 𝑋 ) → ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) |
| 16 | 3 14 15 | syl2an | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) |
| 17 | 12 13 16 | 3jca | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) ) |
| 18 | 1 2 | ablodivdiv | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) ) → ( 𝐴 𝐷 ( 𝐵 𝐷 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) = ( ( 𝐴 𝐷 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) |
| 19 | 17 18 | syldan | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 ( 𝐵 𝐷 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) = ( ( 𝐴 𝐷 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) |
| 20 | 1 8 2 | grpodivinv | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 𝐷 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) = ( 𝐵 𝐺 𝐶 ) ) |
| 21 | 3 20 | syl3an1 | ⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 𝐷 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) = ( 𝐵 𝐺 𝐶 ) ) |
| 22 | 21 | 3adant3r1 | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝐷 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) = ( 𝐵 𝐺 𝐶 ) ) |
| 23 | 22 | oveq2d | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 ( 𝐵 𝐷 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) = ( 𝐴 𝐷 ( 𝐵 𝐺 𝐶 ) ) ) |
| 24 | 11 19 23 | 3eqtr2d | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐵 ) 𝐷 𝐶 ) = ( 𝐴 𝐷 ( 𝐵 𝐺 𝐶 ) ) ) |