This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law for double group division. (Contributed by NM, 29-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abldiv.1 | ⊢ 𝑋 = ran 𝐺 | |
| abldiv.3 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | ||
| Assertion | ablodivdiv | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 ( 𝐵 𝐷 𝐶 ) ) = ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abldiv.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | abldiv.3 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | |
| 3 | ablogrpo | ⊢ ( 𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp ) | |
| 4 | 1 2 | grpodivdiv | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 ( 𝐵 𝐷 𝐶 ) ) = ( 𝐴 𝐺 ( 𝐶 𝐷 𝐵 ) ) ) |
| 5 | 3 4 | sylan | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 ( 𝐵 𝐷 𝐶 ) ) = ( 𝐴 𝐺 ( 𝐶 𝐷 𝐵 ) ) ) |
| 6 | 3ancomb | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) | |
| 7 | 1 2 | grpomuldivass | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐶 ) 𝐷 𝐵 ) = ( 𝐴 𝐺 ( 𝐶 𝐷 𝐵 ) ) ) |
| 8 | 3 7 | sylan | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐶 ) 𝐷 𝐵 ) = ( 𝐴 𝐺 ( 𝐶 𝐷 𝐵 ) ) ) |
| 9 | 1 2 | ablomuldiv | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐶 ) 𝐷 𝐵 ) = ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐶 ) ) |
| 10 | 8 9 | eqtr3d | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐺 ( 𝐶 𝐷 𝐵 ) ) = ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐶 ) ) |
| 11 | 6 10 | sylan2b | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐺 ( 𝐶 𝐷 𝐵 ) ) = ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐶 ) ) |
| 12 | 5 11 | eqtrd | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 ( 𝐵 𝐷 𝐶 ) ) = ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐶 ) ) |