This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group division by an inverse. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpdiv.1 | ⊢ 𝑋 = ran 𝐺 | |
| grpdiv.2 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | ||
| grpdiv.3 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | ||
| Assertion | grpodivinv | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 ( 𝑁 ‘ 𝐵 ) ) = ( 𝐴 𝐺 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpdiv.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpdiv.2 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | |
| 3 | grpdiv.3 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | |
| 4 | 1 2 | grpoinvcl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐵 ) ∈ 𝑋 ) |
| 5 | 4 | 3adant2 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐵 ) ∈ 𝑋 ) |
| 6 | 1 2 3 | grpodivval | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝐵 ) ∈ 𝑋 ) → ( 𝐴 𝐷 ( 𝑁 ‘ 𝐵 ) ) = ( 𝐴 𝐺 ( 𝑁 ‘ ( 𝑁 ‘ 𝐵 ) ) ) ) |
| 7 | 5 6 | syld3an3 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 ( 𝑁 ‘ 𝐵 ) ) = ( 𝐴 𝐺 ( 𝑁 ‘ ( 𝑁 ‘ 𝐵 ) ) ) ) |
| 8 | 1 2 | grpo2inv | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝐵 ) ) = 𝐵 ) |
| 9 | 8 | 3adant2 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝐵 ) ) = 𝐵 ) |
| 10 | 9 | oveq2d | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 ( 𝑁 ‘ ( 𝑁 ‘ 𝐵 ) ) ) = ( 𝐴 𝐺 𝐵 ) ) |
| 11 | 7 10 | eqtrd | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 ( 𝑁 ‘ 𝐵 ) ) = ( 𝐴 𝐺 𝐵 ) ) |