This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law for double group division. (Contributed by NM, 29-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abldiv.1 | |- X = ran G |
|
| abldiv.3 | |- D = ( /g ` G ) |
||
| Assertion | ablodivdiv4 | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D B ) D C ) = ( A D ( B G C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abldiv.1 | |- X = ran G |
|
| 2 | abldiv.3 | |- D = ( /g ` G ) |
|
| 3 | ablogrpo | |- ( G e. AbelOp -> G e. GrpOp ) |
|
| 4 | simpl | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> G e. GrpOp ) |
|
| 5 | 1 2 | grpodivcl | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A D B ) e. X ) |
| 6 | 5 | 3adant3r3 | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D B ) e. X ) |
| 7 | simpr3 | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> C e. X ) |
|
| 8 | eqid | |- ( inv ` G ) = ( inv ` G ) |
|
| 9 | 1 8 2 | grpodivval | |- ( ( G e. GrpOp /\ ( A D B ) e. X /\ C e. X ) -> ( ( A D B ) D C ) = ( ( A D B ) G ( ( inv ` G ) ` C ) ) ) |
| 10 | 4 6 7 9 | syl3anc | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D B ) D C ) = ( ( A D B ) G ( ( inv ` G ) ` C ) ) ) |
| 11 | 3 10 | sylan | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D B ) D C ) = ( ( A D B ) G ( ( inv ` G ) ` C ) ) ) |
| 12 | simpr1 | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> A e. X ) |
|
| 13 | simpr2 | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> B e. X ) |
|
| 14 | simp3 | |- ( ( A e. X /\ B e. X /\ C e. X ) -> C e. X ) |
|
| 15 | 1 8 | grpoinvcl | |- ( ( G e. GrpOp /\ C e. X ) -> ( ( inv ` G ) ` C ) e. X ) |
| 16 | 3 14 15 | syl2an | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( inv ` G ) ` C ) e. X ) |
| 17 | 12 13 16 | 3jca | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A e. X /\ B e. X /\ ( ( inv ` G ) ` C ) e. X ) ) |
| 18 | 1 2 | ablodivdiv | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ ( ( inv ` G ) ` C ) e. X ) ) -> ( A D ( B D ( ( inv ` G ) ` C ) ) ) = ( ( A D B ) G ( ( inv ` G ) ` C ) ) ) |
| 19 | 17 18 | syldan | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D ( B D ( ( inv ` G ) ` C ) ) ) = ( ( A D B ) G ( ( inv ` G ) ` C ) ) ) |
| 20 | 1 8 2 | grpodivinv | |- ( ( G e. GrpOp /\ B e. X /\ C e. X ) -> ( B D ( ( inv ` G ) ` C ) ) = ( B G C ) ) |
| 21 | 3 20 | syl3an1 | |- ( ( G e. AbelOp /\ B e. X /\ C e. X ) -> ( B D ( ( inv ` G ) ` C ) ) = ( B G C ) ) |
| 22 | 21 | 3adant3r1 | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B D ( ( inv ` G ) ` C ) ) = ( B G C ) ) |
| 23 | 22 | oveq2d | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D ( B D ( ( inv ` G ) ` C ) ) ) = ( A D ( B G C ) ) ) |
| 24 | 11 19 23 | 3eqtr2d | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D B ) D C ) = ( A D ( B G C ) ) ) |