This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparison to a nonnegative number based on comparison to squares. (Contributed by NM, 16-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lenegsq | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( ( 𝐴 ≤ 𝐵 ∧ - 𝐴 ≤ 𝐵 ) ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 2 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
| 3 | absge0 | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) | |
| 4 | 2 3 | jca | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) |
| 5 | 1 4 | syl | ⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) |
| 6 | le2sq | ⊢ ( ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( abs ‘ 𝐴 ) ≤ 𝐵 ↔ ( ( abs ‘ 𝐴 ) ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) ) | |
| 7 | 5 6 | sylan | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( abs ‘ 𝐴 ) ≤ 𝐵 ↔ ( ( abs ‘ 𝐴 ) ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) ) |
| 8 | absle | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( abs ‘ 𝐴 ) ≤ 𝐵 ↔ ( - 𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ) | |
| 9 | lenegcon1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - 𝐴 ≤ 𝐵 ↔ - 𝐵 ≤ 𝐴 ) ) | |
| 10 | 9 | anbi1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( - 𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵 ) ↔ ( - 𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ) |
| 11 | ancom | ⊢ ( ( - 𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵 ) ↔ ( 𝐴 ≤ 𝐵 ∧ - 𝐴 ≤ 𝐵 ) ) | |
| 12 | 10 11 | bitr3di | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( - 𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ↔ ( 𝐴 ≤ 𝐵 ∧ - 𝐴 ≤ 𝐵 ) ) ) |
| 13 | 8 12 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( abs ‘ 𝐴 ) ≤ 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ - 𝐴 ≤ 𝐵 ) ) ) |
| 14 | 13 | adantrr | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( abs ‘ 𝐴 ) ≤ 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ - 𝐴 ≤ 𝐵 ) ) ) |
| 15 | absresq | ⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ↑ 2 ) ) | |
| 16 | 15 | breq1d | ⊢ ( 𝐴 ∈ ℝ → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) ) |
| 18 | 7 14 17 | 3bitr3d | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 ≤ 𝐵 ∧ - 𝐴 ≤ 𝐵 ) ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) ) |
| 19 | 18 | 3impb | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( ( 𝐴 ≤ 𝐵 ∧ - 𝐴 ≤ 𝐵 ) ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) ) |