This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . (Contributed by Mario Carneiro, 15-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sqlem5.2 | ||
| 4sqlem5.3 | |||
| 4sqlem5.4 | |||
| Assertion | 4sqlem7 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sqlem5.2 | ||
| 2 | 4sqlem5.3 | ||
| 3 | 4sqlem5.4 | ||
| 4 | 1 2 3 | 4sqlem5 | |
| 5 | 4 | simpld | |
| 6 | 5 | zred | |
| 7 | 2 | nnrpd | |
| 8 | 7 | rphalfcld | |
| 9 | 8 | rpred | |
| 10 | 1 2 3 | 4sqlem6 | |
| 11 | 10 | simprd | |
| 12 | 6 9 11 | ltled | |
| 13 | 10 | simpld | |
| 14 | 9 6 13 | lenegcon1d | |
| 15 | 8 | rpge0d | |
| 16 | lenegsq | ||
| 17 | 6 9 15 16 | syl3anc | |
| 18 | 12 14 17 | mpbi2and | |
| 19 | 2cnd | ||
| 20 | 19 | sqvald | |
| 21 | 20 | oveq2d | |
| 22 | 2 | nncnd | |
| 23 | 2ne0 | ||
| 24 | 23 | a1i | |
| 25 | 22 19 24 | sqdivd | |
| 26 | 22 | sqcld | |
| 27 | 26 19 19 24 24 | divdiv1d | |
| 28 | 21 25 27 | 3eqtr4d | |
| 29 | 18 28 | breqtrd |