This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 4 for 3wlkd . (Contributed by Alexander van der Vekens, 11-Nov-2017) (Revised by AV, 7-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 | |
| 3wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 𝐿 ”〉 | ||
| 3wlkd.s | ⊢ ( 𝜑 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ) | ||
| Assertion | 3wlkdlem4 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 | |
| 2 | 3wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 𝐿 ”〉 | |
| 3 | 3wlkd.s | ⊢ ( 𝜑 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ) | |
| 4 | 1 2 3 | 3wlkdlem3 | ⊢ ( 𝜑 → ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ) |
| 5 | simpl | ⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) → ( 𝑃 ‘ 0 ) = 𝐴 ) | |
| 6 | 5 | eleq1d | ⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) → ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ↔ 𝐴 ∈ 𝑉 ) ) |
| 7 | simpr | ⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) → ( 𝑃 ‘ 1 ) = 𝐵 ) | |
| 8 | 7 | eleq1d | ⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) → ( ( 𝑃 ‘ 1 ) ∈ 𝑉 ↔ 𝐵 ∈ 𝑉 ) ) |
| 9 | 6 8 | anbi12d | ⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) → ( ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 1 ) ∈ 𝑉 ) ↔ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) |
| 10 | 9 | biimparc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ) → ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 1 ) ∈ 𝑉 ) ) |
| 11 | c0ex | ⊢ 0 ∈ V | |
| 12 | 1ex | ⊢ 1 ∈ V | |
| 13 | 11 12 | pm3.2i | ⊢ ( 0 ∈ V ∧ 1 ∈ V ) |
| 14 | fveq2 | ⊢ ( 𝑘 = 0 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 0 ) ) | |
| 15 | 14 | eleq1d | ⊢ ( 𝑘 = 0 → ( ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ↔ ( 𝑃 ‘ 0 ) ∈ 𝑉 ) ) |
| 16 | fveq2 | ⊢ ( 𝑘 = 1 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 1 ) ) | |
| 17 | 16 | eleq1d | ⊢ ( 𝑘 = 1 → ( ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ↔ ( 𝑃 ‘ 1 ) ∈ 𝑉 ) ) |
| 18 | 15 17 | ralprg | ⊢ ( ( 0 ∈ V ∧ 1 ∈ V ) → ( ∀ 𝑘 ∈ { 0 , 1 } ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ↔ ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 1 ) ∈ 𝑉 ) ) ) |
| 19 | 13 18 | mp1i | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ) → ( ∀ 𝑘 ∈ { 0 , 1 } ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ↔ ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 1 ) ∈ 𝑉 ) ) ) |
| 20 | 10 19 | mpbird | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ) → ∀ 𝑘 ∈ { 0 , 1 } ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ) |
| 21 | 20 | ex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) → ∀ 𝑘 ∈ { 0 , 1 } ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ) ) |
| 22 | simpl | ⊢ ( ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) → ( 𝑃 ‘ 2 ) = 𝐶 ) | |
| 23 | 22 | eleq1d | ⊢ ( ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) → ( ( 𝑃 ‘ 2 ) ∈ 𝑉 ↔ 𝐶 ∈ 𝑉 ) ) |
| 24 | simpr | ⊢ ( ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) → ( 𝑃 ‘ 3 ) = 𝐷 ) | |
| 25 | 24 | eleq1d | ⊢ ( ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) → ( ( 𝑃 ‘ 3 ) ∈ 𝑉 ↔ 𝐷 ∈ 𝑉 ) ) |
| 26 | 23 25 | anbi12d | ⊢ ( ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) → ( ( ( 𝑃 ‘ 2 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 3 ) ∈ 𝑉 ) ↔ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ) |
| 27 | 26 | biimparc | ⊢ ( ( ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( ( 𝑃 ‘ 2 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 3 ) ∈ 𝑉 ) ) |
| 28 | 2ex | ⊢ 2 ∈ V | |
| 29 | 3ex | ⊢ 3 ∈ V | |
| 30 | 28 29 | pm3.2i | ⊢ ( 2 ∈ V ∧ 3 ∈ V ) |
| 31 | fveq2 | ⊢ ( 𝑘 = 2 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 2 ) ) | |
| 32 | 31 | eleq1d | ⊢ ( 𝑘 = 2 → ( ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ↔ ( 𝑃 ‘ 2 ) ∈ 𝑉 ) ) |
| 33 | fveq2 | ⊢ ( 𝑘 = 3 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 3 ) ) | |
| 34 | 33 | eleq1d | ⊢ ( 𝑘 = 3 → ( ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ↔ ( 𝑃 ‘ 3 ) ∈ 𝑉 ) ) |
| 35 | 32 34 | ralprg | ⊢ ( ( 2 ∈ V ∧ 3 ∈ V ) → ( ∀ 𝑘 ∈ { 2 , 3 } ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ↔ ( ( 𝑃 ‘ 2 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 3 ) ∈ 𝑉 ) ) ) |
| 36 | 30 35 | mp1i | ⊢ ( ( ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( ∀ 𝑘 ∈ { 2 , 3 } ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ↔ ( ( 𝑃 ‘ 2 ) ∈ 𝑉 ∧ ( 𝑃 ‘ 3 ) ∈ 𝑉 ) ) ) |
| 37 | 27 36 | mpbird | ⊢ ( ( ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ∀ 𝑘 ∈ { 2 , 3 } ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ) |
| 38 | 37 | ex | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) → ( ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) → ∀ 𝑘 ∈ { 2 , 3 } ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ) ) |
| 39 | 21 38 | im2anan9 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( ∀ 𝑘 ∈ { 0 , 1 } ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ∧ ∀ 𝑘 ∈ { 2 , 3 } ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ) ) ) |
| 40 | 3 4 39 | sylc | ⊢ ( 𝜑 → ( ∀ 𝑘 ∈ { 0 , 1 } ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ∧ ∀ 𝑘 ∈ { 2 , 3 } ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ) ) |
| 41 | 2 | fveq2i | ⊢ ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 〈“ 𝐽 𝐾 𝐿 ”〉 ) |
| 42 | s3len | ⊢ ( ♯ ‘ 〈“ 𝐽 𝐾 𝐿 ”〉 ) = 3 | |
| 43 | 41 42 | eqtri | ⊢ ( ♯ ‘ 𝐹 ) = 3 |
| 44 | 43 | oveq2i | ⊢ ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ... 3 ) |
| 45 | fz0to3un2pr | ⊢ ( 0 ... 3 ) = ( { 0 , 1 } ∪ { 2 , 3 } ) | |
| 46 | 44 45 | eqtri | ⊢ ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( { 0 , 1 } ∪ { 2 , 3 } ) |
| 47 | 46 | raleqi | ⊢ ( ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ↔ ∀ 𝑘 ∈ ( { 0 , 1 } ∪ { 2 , 3 } ) ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ) |
| 48 | ralunb | ⊢ ( ∀ 𝑘 ∈ ( { 0 , 1 } ∪ { 2 , 3 } ) ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ↔ ( ∀ 𝑘 ∈ { 0 , 1 } ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ∧ ∀ 𝑘 ∈ { 2 , 3 } ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ) ) | |
| 49 | 47 48 | bitri | ⊢ ( ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ↔ ( ∀ 𝑘 ∈ { 0 , 1 } ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ∧ ∀ 𝑘 ∈ { 2 , 3 } ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ) ) |
| 50 | 40 49 | sylibr | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ) |