This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for 3wlkd . (Contributed by Alexander van der Vekens, 10-Nov-2017) (Revised by AV, 7-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 | |
| 3wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 𝐿 ”〉 | ||
| 3wlkd.s | ⊢ ( 𝜑 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ) | ||
| Assertion | 3wlkdlem3 | ⊢ ( 𝜑 → ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 | |
| 2 | 3wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 𝐿 ”〉 | |
| 3 | 3wlkd.s | ⊢ ( 𝜑 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ) | |
| 4 | 1 | fveq1i | ⊢ ( 𝑃 ‘ 0 ) = ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 0 ) |
| 5 | s4fv0 | ⊢ ( 𝐴 ∈ 𝑉 → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 0 ) = 𝐴 ) | |
| 6 | 4 5 | eqtrid | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑃 ‘ 0 ) = 𝐴 ) |
| 7 | 1 | fveq1i | ⊢ ( 𝑃 ‘ 1 ) = ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 1 ) |
| 8 | s4fv1 | ⊢ ( 𝐵 ∈ 𝑉 → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 1 ) = 𝐵 ) | |
| 9 | 7 8 | eqtrid | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝑃 ‘ 1 ) = 𝐵 ) |
| 10 | 6 9 | anim12i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ) |
| 11 | 1 | fveq1i | ⊢ ( 𝑃 ‘ 2 ) = ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 2 ) |
| 12 | s4fv2 | ⊢ ( 𝐶 ∈ 𝑉 → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 2 ) = 𝐶 ) | |
| 13 | 11 12 | eqtrid | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝑃 ‘ 2 ) = 𝐶 ) |
| 14 | 1 | fveq1i | ⊢ ( 𝑃 ‘ 3 ) = ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) |
| 15 | s4fv3 | ⊢ ( 𝐷 ∈ 𝑉 → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) = 𝐷 ) | |
| 16 | 14 15 | eqtrid | ⊢ ( 𝐷 ∈ 𝑉 → ( 𝑃 ‘ 3 ) = 𝐷 ) |
| 17 | 13 16 | anim12i | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) → ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) |
| 18 | 10 17 | anim12i | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ) |
| 19 | 3 18 | syl | ⊢ ( 𝜑 → ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ) |