This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 4 for 3wlkd . (Contributed by Alexander van der Vekens, 11-Nov-2017) (Revised by AV, 7-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3wlkd.p | |- P = <" A B C D "> |
|
| 3wlkd.f | |- F = <" J K L "> |
||
| 3wlkd.s | |- ( ph -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) ) |
||
| Assertion | 3wlkdlem4 | |- ( ph -> A. k e. ( 0 ... ( # ` F ) ) ( P ` k ) e. V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3wlkd.p | |- P = <" A B C D "> |
|
| 2 | 3wlkd.f | |- F = <" J K L "> |
|
| 3 | 3wlkd.s | |- ( ph -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) ) |
|
| 4 | 1 2 3 | 3wlkdlem3 | |- ( ph -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) ) |
| 5 | simpl | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( P ` 0 ) = A ) |
|
| 6 | 5 | eleq1d | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( ( P ` 0 ) e. V <-> A e. V ) ) |
| 7 | simpr | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( P ` 1 ) = B ) |
|
| 8 | 7 | eleq1d | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( ( P ` 1 ) e. V <-> B e. V ) ) |
| 9 | 6 8 | anbi12d | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V ) <-> ( A e. V /\ B e. V ) ) ) |
| 10 | 9 | biimparc | |- ( ( ( A e. V /\ B e. V ) /\ ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) ) -> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V ) ) |
| 11 | c0ex | |- 0 e. _V |
|
| 12 | 1ex | |- 1 e. _V |
|
| 13 | 11 12 | pm3.2i | |- ( 0 e. _V /\ 1 e. _V ) |
| 14 | fveq2 | |- ( k = 0 -> ( P ` k ) = ( P ` 0 ) ) |
|
| 15 | 14 | eleq1d | |- ( k = 0 -> ( ( P ` k ) e. V <-> ( P ` 0 ) e. V ) ) |
| 16 | fveq2 | |- ( k = 1 -> ( P ` k ) = ( P ` 1 ) ) |
|
| 17 | 16 | eleq1d | |- ( k = 1 -> ( ( P ` k ) e. V <-> ( P ` 1 ) e. V ) ) |
| 18 | 15 17 | ralprg | |- ( ( 0 e. _V /\ 1 e. _V ) -> ( A. k e. { 0 , 1 } ( P ` k ) e. V <-> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V ) ) ) |
| 19 | 13 18 | mp1i | |- ( ( ( A e. V /\ B e. V ) /\ ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) ) -> ( A. k e. { 0 , 1 } ( P ` k ) e. V <-> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V ) ) ) |
| 20 | 10 19 | mpbird | |- ( ( ( A e. V /\ B e. V ) /\ ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) ) -> A. k e. { 0 , 1 } ( P ` k ) e. V ) |
| 21 | 20 | ex | |- ( ( A e. V /\ B e. V ) -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> A. k e. { 0 , 1 } ( P ` k ) e. V ) ) |
| 22 | simpl | |- ( ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) -> ( P ` 2 ) = C ) |
|
| 23 | 22 | eleq1d | |- ( ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) -> ( ( P ` 2 ) e. V <-> C e. V ) ) |
| 24 | simpr | |- ( ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) -> ( P ` 3 ) = D ) |
|
| 25 | 24 | eleq1d | |- ( ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) -> ( ( P ` 3 ) e. V <-> D e. V ) ) |
| 26 | 23 25 | anbi12d | |- ( ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) -> ( ( ( P ` 2 ) e. V /\ ( P ` 3 ) e. V ) <-> ( C e. V /\ D e. V ) ) ) |
| 27 | 26 | biimparc | |- ( ( ( C e. V /\ D e. V ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( ( P ` 2 ) e. V /\ ( P ` 3 ) e. V ) ) |
| 28 | 2ex | |- 2 e. _V |
|
| 29 | 3ex | |- 3 e. _V |
|
| 30 | 28 29 | pm3.2i | |- ( 2 e. _V /\ 3 e. _V ) |
| 31 | fveq2 | |- ( k = 2 -> ( P ` k ) = ( P ` 2 ) ) |
|
| 32 | 31 | eleq1d | |- ( k = 2 -> ( ( P ` k ) e. V <-> ( P ` 2 ) e. V ) ) |
| 33 | fveq2 | |- ( k = 3 -> ( P ` k ) = ( P ` 3 ) ) |
|
| 34 | 33 | eleq1d | |- ( k = 3 -> ( ( P ` k ) e. V <-> ( P ` 3 ) e. V ) ) |
| 35 | 32 34 | ralprg | |- ( ( 2 e. _V /\ 3 e. _V ) -> ( A. k e. { 2 , 3 } ( P ` k ) e. V <-> ( ( P ` 2 ) e. V /\ ( P ` 3 ) e. V ) ) ) |
| 36 | 30 35 | mp1i | |- ( ( ( C e. V /\ D e. V ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( A. k e. { 2 , 3 } ( P ` k ) e. V <-> ( ( P ` 2 ) e. V /\ ( P ` 3 ) e. V ) ) ) |
| 37 | 27 36 | mpbird | |- ( ( ( C e. V /\ D e. V ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> A. k e. { 2 , 3 } ( P ` k ) e. V ) |
| 38 | 37 | ex | |- ( ( C e. V /\ D e. V ) -> ( ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) -> A. k e. { 2 , 3 } ( P ` k ) e. V ) ) |
| 39 | 21 38 | im2anan9 | |- ( ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( A. k e. { 0 , 1 } ( P ` k ) e. V /\ A. k e. { 2 , 3 } ( P ` k ) e. V ) ) ) |
| 40 | 3 4 39 | sylc | |- ( ph -> ( A. k e. { 0 , 1 } ( P ` k ) e. V /\ A. k e. { 2 , 3 } ( P ` k ) e. V ) ) |
| 41 | 2 | fveq2i | |- ( # ` F ) = ( # ` <" J K L "> ) |
| 42 | s3len | |- ( # ` <" J K L "> ) = 3 |
|
| 43 | 41 42 | eqtri | |- ( # ` F ) = 3 |
| 44 | 43 | oveq2i | |- ( 0 ... ( # ` F ) ) = ( 0 ... 3 ) |
| 45 | fz0to3un2pr | |- ( 0 ... 3 ) = ( { 0 , 1 } u. { 2 , 3 } ) |
|
| 46 | 44 45 | eqtri | |- ( 0 ... ( # ` F ) ) = ( { 0 , 1 } u. { 2 , 3 } ) |
| 47 | 46 | raleqi | |- ( A. k e. ( 0 ... ( # ` F ) ) ( P ` k ) e. V <-> A. k e. ( { 0 , 1 } u. { 2 , 3 } ) ( P ` k ) e. V ) |
| 48 | ralunb | |- ( A. k e. ( { 0 , 1 } u. { 2 , 3 } ) ( P ` k ) e. V <-> ( A. k e. { 0 , 1 } ( P ` k ) e. V /\ A. k e. { 2 , 3 } ( P ` k ) e. V ) ) |
|
| 49 | 47 48 | bitri | |- ( A. k e. ( 0 ... ( # ` F ) ) ( P ` k ) e. V <-> ( A. k e. { 0 , 1 } ( P ` k ) e. V /\ A. k e. { 2 , 3 } ( P ` k ) e. V ) ) |
| 50 | 40 49 | sylibr | |- ( ph -> A. k e. ( 0 ... ( # ` F ) ) ( P ` k ) e. V ) |