This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 2reu4 . (Contributed by Alexander van der Vekens, 1-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2reu4lem | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu3 | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ) ) | |
| 2 | reu3 | ⊢ ( ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑤 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) | |
| 3 | 1 2 | anbi12i | ⊢ ( ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ↔ ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ) ∧ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑤 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
| 4 | 3 | a1i | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ↔ ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ) ∧ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑤 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) ) ) |
| 5 | an4 | ⊢ ( ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ) ∧ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑤 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) ↔ ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ∧ ( ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ∃ 𝑤 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) ) | |
| 6 | 5 | a1i | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ) ∧ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑤 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) ↔ ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ∧ ( ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ∃ 𝑤 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) ) ) |
| 7 | rexcom | ⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) | |
| 8 | 7 | anbi2i | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
| 9 | anidm | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) | |
| 10 | 8 9 | bitri | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) |
| 11 | 10 | a1i | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
| 12 | r19.26 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) | |
| 13 | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) | |
| 14 | 13 | r19.3rz | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) |
| 15 | 14 | bicomd | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) |
| 16 | 15 | adantr | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) |
| 17 | 16 | adantr | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) |
| 18 | 17 | anbi2d | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
| 19 | jcab | ⊢ ( ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ( 𝜑 → 𝑥 = 𝑧 ) ∧ ( 𝜑 → 𝑦 = 𝑤 ) ) ) | |
| 20 | 19 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝜑 → 𝑥 = 𝑧 ) ∧ ( 𝜑 → 𝑦 = 𝑤 ) ) ) |
| 21 | r19.26 | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( ( 𝜑 → 𝑥 = 𝑧 ) ∧ ( 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) | |
| 22 | 20 21 | bitri | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) |
| 23 | 22 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) |
| 24 | r19.26 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) | |
| 25 | 23 24 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) |
| 26 | 25 | a1i | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
| 27 | 18 26 | bitr4d | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 28 | 12 27 | bitr2id | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
| 29 | r19.26 | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑦 = 𝑤 ) ) ) | |
| 30 | nfra1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) | |
| 31 | 30 | r19.3rz | ⊢ ( 𝐵 ≠ ∅ → ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ) ) |
| 32 | 31 | ad2antlr | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ) ) |
| 33 | 32 | bicomd | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ) ) |
| 34 | ralcom | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑦 = 𝑤 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) | |
| 35 | 34 | a1i | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑦 = 𝑤 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) |
| 36 | 33 35 | anbi12d | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
| 37 | 29 36 | bitrid | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
| 38 | 37 | ralbidv | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
| 39 | 28 38 | bitr4d | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
| 40 | r19.23v | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ↔ ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ) | |
| 41 | r19.23v | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑦 = 𝑤 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) | |
| 42 | 40 41 | anbi12i | ⊢ ( ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) |
| 43 | 42 | 2ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) |
| 44 | 43 | a1i | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
| 45 | neneq | ⊢ ( 𝐴 ≠ ∅ → ¬ 𝐴 = ∅ ) | |
| 46 | neneq | ⊢ ( 𝐵 ≠ ∅ → ¬ 𝐵 = ∅ ) | |
| 47 | 45 46 | anim12i | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) ) |
| 48 | 47 | olcd | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ∨ ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) ) ) |
| 49 | dfbi3 | ⊢ ( ( 𝐴 = ∅ ↔ 𝐵 = ∅ ) ↔ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ∨ ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) ) ) | |
| 50 | 48 49 | sylibr | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( 𝐴 = ∅ ↔ 𝐵 = ∅ ) ) |
| 51 | nfre1 | ⊢ Ⅎ 𝑦 ∃ 𝑦 ∈ 𝐵 𝜑 | |
| 52 | nfv | ⊢ Ⅎ 𝑦 𝑥 = 𝑧 | |
| 53 | 51 52 | nfim | ⊢ Ⅎ 𝑦 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) |
| 54 | nfre1 | ⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ 𝐴 𝜑 | |
| 55 | nfv | ⊢ Ⅎ 𝑥 𝑦 = 𝑤 | |
| 56 | 54 55 | nfim | ⊢ Ⅎ 𝑥 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) |
| 57 | 53 56 | raaan2 | ⊢ ( ( 𝐴 = ∅ ↔ 𝐵 = ∅ ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
| 58 | 50 57 | syl | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
| 59 | 58 | adantr | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
| 60 | 39 44 59 | 3bitrd | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
| 61 | 60 | 2rexbidva | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
| 62 | reeanv | ⊢ ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ∃ 𝑤 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) | |
| 63 | 61 62 | bitr2di | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ( ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ∃ 𝑤 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 64 | 11 63 | anbi12d | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ∧ ( ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ∃ 𝑤 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) ) |
| 65 | 4 6 64 | 3bitrd | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) ) |