This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of double restricted existential uniqueness ("exactly one x and exactly one y "), analogous to 2eu4 . (Contributed by Alexander van der Vekens, 1-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2reu4 | ⊢ ( ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reurex | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) | |
| 2 | rexn0 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → 𝐴 ≠ ∅ ) | |
| 3 | 1 2 | syl | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → 𝐴 ≠ ∅ ) |
| 4 | reurex | ⊢ ( ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) | |
| 5 | rexn0 | ⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 → 𝐵 ≠ ∅ ) | |
| 6 | 4 5 | syl | ⊢ ( ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 → 𝐵 ≠ ∅ ) |
| 7 | 3 6 | anim12i | ⊢ ( ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) → ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ) |
| 8 | ne0i | ⊢ ( 𝑥 ∈ 𝐴 → 𝐴 ≠ ∅ ) | |
| 9 | ne0i | ⊢ ( 𝑦 ∈ 𝐵 → 𝐵 ≠ ∅ ) | |
| 10 | 8 9 | anim12i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ) |
| 11 | 10 | a1d | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝜑 → ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ) ) |
| 12 | 11 | rexlimivv | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ) |
| 13 | 12 | adantr | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) → ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ) |
| 14 | 2reu4lem | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) ) | |
| 15 | 7 13 14 | pm5.21nii | ⊢ ( ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |