This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A way to express restricted uniqueness. (Contributed by NM, 24-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reu3 | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reurex | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜑 ) | |
| 2 | reu6 | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) | |
| 3 | biimp | ⊢ ( ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( 𝜑 → 𝑥 = 𝑦 ) ) | |
| 4 | 3 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 5 | 4 | reximi | ⊢ ( ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 6 | 2 5 | sylbi | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 7 | 1 6 | jca | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
| 8 | rexex | ⊢ ( ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) → ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) | |
| 9 | 8 | anim2i | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) → ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
| 10 | eu3v | ⊢ ( ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ∃ 𝑦 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ) ) | |
| 11 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 12 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 13 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝑥 = 𝑦 ) ) ) | |
| 14 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝑥 = 𝑦 ) ) ) | |
| 15 | 14 | albii | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
| 16 | 13 15 | bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 17 | 16 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 18 | 12 17 | anbi12i | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ∃ 𝑦 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ) ) |
| 19 | 10 11 18 | 3bitr4i | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
| 20 | 9 19 | sylibr | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) → ∃! 𝑥 ∈ 𝐴 𝜑 ) |
| 21 | 7 20 | impbii | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |